Hydroxyapatite is a biologically compatible material and a major component of dental enamel and bone tissue. Because of its biocompatibility and structural similarity to human teeth and the skeletal system, a number of dental studies have evaluated its application as a bone substitute or dental restorative material. This study was to evaluate the differences in bonding strength and resistance to demineralization between micro-hydroxyapatite and nano-hydroxyapatite added to self-cured resin-reinforced/modified glass ionomer cement. RelyX was used as the base glass ionomer cement material and for the control group. 10% micro-hydroxyapatite added glass ionomer cement was named experimental group 1, and 10% nano-hydroxyapatite added glass ionomer cement was named experimental group 2. Physical tests for ISO9917-1:2007 in each group was acceptable, except the setting time of nano-hydroxyapatite added glass ionomer cement, which exceeded maximum setting time. Bonding strength was greatest in nano-hydroxyapatite glass ionomer cement, and cohesive failure was common in all specimens. When fractured surface was observed under SEM, spherical particles were observed in experimental groups containing hydroxyapatite particles, and they were more prevalent in nano-HA added glass ionomer cement group than in micro-hydroxyapatite added group. Both experimental groups exhibited greater resistance to demineralization compared to the control group, and there was no significant difference between the experimental groups. Under SEM, nano-hydroxyapatite added glass ionomer cement exhibited increased resistance to demineralization compared to micro-hydroxyapatite added glass ionomer cement.
This study aimed to evaluate the anticariogenic and remineralization effects of the glass ionomer dental luting cement containing nano-β-TCP in vitro. The β-Tricalcium Phosphate (β-TCP) are the components of dental enamel and bone mineral as biological apatites. In addition, β-TCP contains a significant amount of calcium and phosphate, which can promote remineralization of enamel subsurface lesions in animal and human. RelyXTM glass ionomer cement(3M/ESPE, USA) was used as dental luting cement. Film thickness, setting time, and compressive strength was measured for each group of pure glass GIC, 15% nano-β-TCP GIC. Human molars were prepared in box-shaped cavities that were filled with the GIC with and without the 15% nano-β-TCP were placed in 25ml of pH 5.0 acid buffer for 4 days at 37°C. After 4 days, longitudinal sections (1007m) were obtained through the center of each restoration. The sections were analyzed using a scanning electronic microscope (SEM) and confocal laser scanning microscopy (CLSM) to identify the change in the enamel surface. A significant difference in the CLSM images between pure GIC and nano-β-TCP-GIC. CLSM allows the demineralized surface layers of sound enamel to be visualized down to approximately 100 μm. The pure GIC specimens had a relatively thick fluorescent layer. On the other hand, the fluorescent layer of the nano-β-TCP-GIC specimens were thinner. The SEM images of micro surfaces demonstrate that nano-β-TCP-GIC is less rough than pure GIC. Therefore, the addition of nano-β-TCP enhanced protection against acid demineralization and promoted remineralization of enamel surface.
Rheo-diecasting with electro-magnetic stirring has been carried out to investigate macro-segregation and microstructural characteristics of a high strength AlSiMg alloy under various process conditions. The amount of initial heterogeneous nucleation and the degree of temperature uniformity in the slurry are dependent on the superheat of the melt at pouring into the slurry making vessel. The formation of macro-segregation in rheo-diecasting was closely related to the microstructural characteristics of semi-solid slurries. Slurries which have fine and globular ¡-Al particles prevent the formation of macro-segregation throughout the rheo-diecast specimens. However, coarse and non-globular ¡-Al particles result in the formation of macro-segregation, leading to a non-uniform hardness distribution, dependent on the thickness of the product. Various casting process parameters were examined to prevent the formation of macro-segregation, and the optimal ranges of the process conditions for rheo-diecasting were determined as follows: the injection velocity of 0.31.0 m·s ¹1 and the mold temperature above 150°C.
The purpose of this study is to investigate the remineralization of enamel in the human tooth by fissure sealant containing various amount of hydroxyapatite. Prior to remineralization experiments, the necessary requirements of the dental fissure sealant, the curing depth and the curing time, were measured with the content of the hydroxyapatite according to the standard of ISO 6874. Various amount of hydroxyapatite was mixed uniformly using sonicator up to 20 wt% to the fissure sealant. In spite both the curing time and the curing depth were decreased with increasing the content of hydroxyapatite, all samples were satisfied the ISO requirements. Remineralization experimental samples were produced by bonding fissure sealant containing various amount of hydroxyapatite to human tooth enamel using manufacturer’s information. After exposure to the simulated body fluid at 36.5oC for 4 weeks, the bonding strength and the surface morphology were examined using Instron and scanning electronic microscope, respectively. The bonding strength between the fissure sealant and the human teeth was drastically enhanced with the amount of hydroxyapatite. The remineralization zone could be observed along with the boundary of hydroxyapatite and fissure sealant using a scanning electronic microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.