On-demand NW light sources in a photonic integrated circuit (PIC) have faced several practical challenges. Here, we report on an all-graphene-contact, electrically pumped, on-demand transferrable NW source that is fabricated by implementing an all-graphene-contact approach in combination with a highly accurate microtransfer printing technique. A vertically p−i−n-doped top-down-fabricated semiconductor NW with optical gain structures is electrically pumped through the patterned multilayered graphene contacts. Electroluminescence (EL) spectroscopy results reveal that the electrically driven NW device exhibits strong EL emission between the contacts and displays waveguiding properties. Further, a single NW device is precisely integrated into an existing photonic waveguide to perform light coupling and waveguiding experiments. Three-dimensional numerical simulation results show a good agreement with experimental observations. We believe that our all-graphene-contact approach is readily applicable to various micro/nanostructures and devices, which facilitates stable electrical operation and thus extends their practical applicability in compact integrated circuits.
In this study, we report the experimental demonstration of electrically driven on-chip transferrable microdisk light-emitting diodes (LEDs). A vertical p– i– n doped AlGaInP microdisk, including multi-quantum-well structures, is top-down-fabricated, on-chip micro-transferred, and converted into single micro-LEDs. Optically transparent and mechanically flexible multilayered graphene sheets are judiciously designed and introduced to the top and bottom surfaces of a single microdisk, thereby forming the top and bottom contacts. Using electroluminescence measurements, the fabricated micro-LEDs are characterized; they exhibit diode-like transport behaviors, spectroscopic light-out vs current ( L– I) characteristics, and polarization-resolved emission properties. We believe that the proposed all-graphene-contact approach offers a direct and easy current injection scheme and further helps electrify various on-chip transferrable microarchitectures.
Coupled optical cavities are an attractive on-chip optical platform for realizing quantum mechanical concepts in electrodynamics and further developing non-Hermitian photonics. In such systems, an intercavity interaction is often considered as a key parameter to understand the system’s behaviors but its estimation/calculation is typically limited for some simplified systems owing to extended complexities. For example, multi-coupled photonic crystal (PhC) nanocavities exhibiting strong resonances with a large free spectral range can serve as an excellent test-bed to study non-Hermitian optical properties when spatially non-uniform gain is introduced. However, the detailed quantitative analysis such as spectral tracing of cavity normal modes is often limited in commercially available numerical tools because of the required massive computation resources. Herein, we report on a concept of spatial overlap integrals (SOIs) between the eigenmodes in non-coupled PhC nanocavities and utilize them to obtain the intercavity interactions in passively coupled PhC nanocavity systems. With the help of coupling strength factors calculated from SOIs, we were able to fully exploit the coupled mode theory (CMT) and readily trace the detailed spectral behaviors of normal modes in various multi-coupled PhC nanocavities. Full-wave numerical simulation results verified the proposed method, revealing that the characteristics of original eigenmodes from non-coupled PhC nanocavities can act as key building blocks for analyzing the normal modes of multi-coupled PhC nanocavities. We further applied this SOI method to various multi-coupled PhC nanocavities with non-symmetric optical gain/loss distributions and successfully observed the unusual spectral evolution of normal modes and the correspondingly occurring unique non-Hermitian behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.