BackgroundThere is no accepted landmark for the mechanical axis of the femoral axis in sagittal plane in conventional total knee arthroplasty.MethodsAs palpable anatomic landmarks of the femur, lateral epicondyle, and anterior margin of the greater trochanter were identified. The line connecting these two landmarks was defined as the "palpable sagittal axis". The mechanical axis of the femur was compared with the palpable sagittal axis and the distal femoral anterior cortex axis. These axes were also compared with sagittal bowing of the femur.ResultsThe distal femoral anterior cortex axis and the palpable sagittal axis were flexed by 4.1° and 2.4° more than the sagittal mechanical axes, respectively (p < 0.05). However, the palpable sagittal axis was not correlated with sagittal bowing of the femur (Spearman's rs, 0.17; p = 0.14).ConclusionsThe palpable sagittal axis showed a consistent relationship with the sagittal mechanical femoral axes regardless of the severity of the sagittal bowing of the femur.
Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA < 5°) at 25 wt % PDMS-PEG copolymer in the paste, and they have an electrical conductivity of over 1000 S m. Patterned superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.