The use of the Internet is growing in this day and age, so another area has developed to use the Internet, called Internet of Things (IoT). It facilitates the machines and objects to communicate, compute and coordinate with each other. It is an enabler for the intelligence affixed to several essential features of the modern world, such as homes, hospitals, buildings, transports and cities. The security and privacy are some of the critical issues related to the wide application of IoT. Therefore, these issues prevent the wide adoption of the IoT. In this paper, we are presenting an overview about different layered architectures of IoT and attacks regarding security from the perspective of layers. In addition, a review of mechanisms that provide solutions to these issues is presented with their limitations. Furthermore, we have suggested a new secure layered architecture of IoT to overcome these issues.
By design, Named Data Networking (NDN) supports pull-based traffic, where content is retrieved only upon consumer request. However, some of the use cases (i.e., emergency situations) in the Internet of Things (IoT) requires push-based traffic, where a producer broadcasts the data based on the emergency situation without any consumer request. Therefore, it is necessary to modify the existing NDN forwarding engine when designing for an IoT scenario. Although solutions are provided to enable push-based traffic in IoT, the main solutions in the current literature lack data broadcast control design. Moreover, the existing solutions use an additional interest messages exchange, which creates extra overheads in the network, thereby resulting in higher delay and lower throughput. In this paper, therefore, we propose a name-based push-data broadcast control scheme for IoT systems, and consider two scenarios, i.e., smart buildings and vehicular networks. The proposed scheme consists of a robust content namespace design, device namespace design, and minor amendments to the data packet format and unsolicited data policy of the forwarding engine as well. The evaluation is carried out for both scenarios. Simulation experiments show that the proposed scheme outperforms the recent proposed schemes in terms of total number of data packets processed in the network, total energy consumption, and average delay in the network by varying the number of data packets per 2 s and varying vehicle speed.
Energy-harvesting-based physical layer security (PLS) has become a promising technique, as it not only secures information from eavesdropping without upper layer data encryption, but it also improves the energy efficiency of wireless networks. However, it imposes new challenges, as adversary parties can overhear the transmission of confidential information between the source and destination via a relay. Therefore, the transmit power of the signals must be large enough for energy harvesting, but it must also be small enough to avoid eavesdropping. This is even more challenging with multi-hop multi-path wireless networks. Motivated by these observations, this paper proposes three innovative protocols, namely, the shortest path selection (SPS) protocol, random path selection (RPS) protocol, and best path selection (BPS) protocol. These will enhance the security of multi-hop multi-path randomize-and-forward (RF) cooperative wireless sensor networks (WSNs) under the presence of eavesdroppers and hardware impairment, wherein the source node and relay nodes are capable of harvesting energy from beacon for data transmission. Furthermore, we derive exact closed-form expressions and the asymptotic outage probability for each protocol under multiple eavesdropping attacks. The simulation results validate the theoretical results.
Abstract-Wireless local area networks (WLANs) based on the IEEE 802.11 standard are becoming increasingly popular and widely deployed. It is likely that WLAN will become an important complementary technology for future cellular systems and will typically be used to provide hotspot coverage. In this paper, the complementary use of WLANs in conjunction with mobile cellular networks is studied. We identify the fairness problem between uplink and downlink traffic flows in the IEEE 802.11 distributed coordination function and then propose an easy solution that can be implemented at the access point (AP) in the MAC layer without modification of the standard for stations (STAs). This solution aims at providing a controllable resource-allocation method between uplink and downlink traffic flows and adapting the parameters according to the dynamic traffic load changes. The proposed solution also enhances the system utilization by reducing the probability of frame collision.Index Terms-Fairness, hotspot, IEEE 802.11 distributed coordination function (DCF), wireless local area network (WLAN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.