By design, Named Data Networking (NDN) supports pull-based traffic, where content is retrieved only upon consumer request. However, some of the use cases (i.e., emergency situations) in the Internet of Things (IoT) requires push-based traffic, where a producer broadcasts the data based on the emergency situation without any consumer request. Therefore, it is necessary to modify the existing NDN forwarding engine when designing for an IoT scenario. Although solutions are provided to enable push-based traffic in IoT, the main solutions in the current literature lack data broadcast control design. Moreover, the existing solutions use an additional interest messages exchange, which creates extra overheads in the network, thereby resulting in higher delay and lower throughput. In this paper, therefore, we propose a name-based push-data broadcast control scheme for IoT systems, and consider two scenarios, i.e., smart buildings and vehicular networks. The proposed scheme consists of a robust content namespace design, device namespace design, and minor amendments to the data packet format and unsolicited data policy of the forwarding engine as well. The evaluation is carried out for both scenarios. Simulation experiments show that the proposed scheme outperforms the recent proposed schemes in terms of total number of data packets processed in the network, total energy consumption, and average delay in the network by varying the number of data packets per 2 s and varying vehicle speed.
Vehicular ad-hoc network (VANET) is a technology that allows ubiquitous mobility to mobile users. Inter-vehicle communication is an integral component of intelligent transportation systems that enables a wide variety of applications where vehicles interact and cooperate with each other, from safety applications to non-safety applications. VANETs applications have different needs (e.g., latency, reliability, delivery priorities, etc.) in terms of delivery effectiveness. In the last decade, named data networking (NDN) gained the attention of the research community for effective content retrieval and dissemination in mobile environments such as VANETs. In NDN, the content’s name has a vital role in storing and retrieving the content effectively and efficiently. In NDN-based VANETs, adaptive content dissemination solutions must be introduced that can make decisions related to forwarding, cache management, etc., based on context information represented by a content name. In this context, our main contributions are two-fold: (i) we present the hierarchical context-aware content-naming (CACN) scheme for NDN-based VANETs that enables naming the safety and non-safety applications, and (ii) we present a decentralized context-aware notification (DCN) protocol that broadcasts event notification information for awareness within the application-based geographical area. Simulation results show that the proposed DCN protocol succeeds in achieving reduced transmissions, bandwidth, and energy compared to existing critical contents dissemination protocols.
Data communication in the present Internet paradigm is dependent on fixed locations that disseminate similar data several times. As a result, the number of problems has been generated in which location dependency is the most crucial for communication. Therefore, Named Data Networking (NDN) is a new network architecture that revolutionized the handling gigantic amount of data generated from diverse locations. The NDN offers in-network cache which is the most beneficial feature to reduce the difficulties of location-based Internet paradigms. Moreover, it mitigates network congestion and provides a short stretch path in the data downloading procedure. The current study explores a new comparative analysis of popularity-based cache management strategies for NDN to find the optimal caching scheme to enhance the overall network performance. Therefore, the content popularity-based caching strategies are comparatively and extensively studied in an NDN-based simulation environment in terms of most significant metrics such as hit ratio, content diversity ratio, content redundancy, and stretch ratio. In this analysis, the Compound Popular Content Caching Strategy (CPCCS) has performed better in terms to enhance the overall NDN-based caching performance. Therefore, it is suggested that the CPCCS will perform better to achieve enhanced performance in emerging environments such as, Internet of Things (IoT), Fog computing, Edge computing, 5G, and Software Defined Network (SDN). INDEX TERMS Content centric networking, information-centric networking, named data networking, caching.
Named data networking (NDN) and edge cloud computing (ECC) are emerging technologies that are considered as the most representative technologies for the future Internet. Both technologies are the promising enabler for the future Internet such as fifth generation (5G) and beyond which requires fast information response time. We believe that clear benefits can be achieved from the interplay of NDN and ECC and enables future network technology to be much more flexible, secure and efficient. In this paper, therefore, we integrate NDN with ECC in order to achieve fast information response time. Our framework is based on N-Tier architecture and comprises of three main Tiers. The NDN is located at the Tier1 (Things/end devices) and comprises of all the basic functionalities that connect Internet of Things (IoT) devices with Tier 2 (Edge Computing), where we have deployed our Edge node application. The Tier 2 is then further connected with Tier 3 (Cloud Computing), where our Cloud node application is deployed at multiple hops on the Microsoft Azure Cloud machine located in Virginia, WA, USA. We implement an NDN-based ECC framework and the outcomes are evaluated through testbed and simulations in terms of interest aggregation, round trip time (RTT), service lookup time with single query lookup time and with various traffic loads (loadbased lookup time) from the IoT devices. Our measurements show that enabling NDN with edge computing is a promising approach to reduce latency and the backbone network traffic and capable of processing large amounts of data quickly and delivering the results to the users in real time. INDEX TERMS Internet of things, edge computing, fog computing, distributed computing, caching, named data networking, framework, offloading, latency, scalability, multi-access edge computing, future Internet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.