Controlling autonomous propulsion of microswimmers is essential for targeted drug delivery and applications of micro/nanomachines in environmental remediation and beyond. Herein, we report two-dimensional (2D) carbon nitride-based Janus particles as highly efficient, light-driven microswimmers in aqueous media. Due to the superior photocatalytic properties of poly(heptazine imide) (PHI), the microswimmers are activated by both visible and ultraviolet (UV) light in conjunction with different capping materials (Au, Pt, and SiO2) and fuels (H2O2 and alcohols). Assisted by photoelectrochemical analysis of the PHI surface photoreactions, we elucidate the dominantly diffusiophoretic propulsion mechanism and establish the oxygen reduction reaction (ORR) as the major surface reaction in ambient conditions on metal-capped PHI and even with TiO2-based systems, rather than the hydrogen evolution reaction (HER), which is generally invoked as the source of propulsion under ambient conditions with alcohols as fuels. Making use of the intrinsic solar energy storage ability of PHI, we establish the concept of photocapacitive Janus microswimmers that can be charged by solar energy, thus enabling persistent light-induced propulsion even in the absence of illumination—a process we call “solar battery swimming”—lasting half an hour and possibly beyond. We anticipate that this propulsion scheme significantly extends the capabilities in targeted cargo/drug delivery, environmental remediation, and other potential applications of micro/nanomachines, where the use of versatile earth-abundant materials is a key prerequisite.
Here we report on the modular synthesis and characterization of biodegradable, controlled porous, liquid crystal elastomers (LCE) and their use as three-dimensional cell culture scaffolds. The elastomers were prepared by cross-linking of star block-co-polymers with pendant cholesterol units resulting in the formation of smectic-A LCEs as determined by polarized optical microscopy, DSC, and X-ray diffraction. Scanning electron microscopy revealed the porosity of the as-prepared biocompatible LCEs, making them suitable as 3D cell culture scaffolds. Biodegradability studies in physiological buffers at varying pH show that these scaffolds are intact for about 11 weeks after which degradation sets in at an exponential rate. Initial results from cell culture studies indicate that these smectic LCEs are compatible with growth, survival, and expansion of cultured neuroblastomas and myoblasts when grown on the LCEs for extended time periods (about a month). These preliminary cell studies focused on characterizing the elastomer-based scaffolds' biocompatibility and the successful 3D incorporation as well as growth of cells in 60 to 150-μm thick elastomer sheets.
While current light-driven microswimmers require high-intensity light, UV light, or toxic fuels to propel them, powering them with low-intensity UV-free visible light without fuels is essential to enable their potential high-impact applications. Therefore, in this study, a new material for light-driven microswimmers in the form of CoO is introduced. Janus CoO–TiO2 microswimmers powered with low-intensity, UV-free visible light inside water without using any toxic fuels like H2O2 is proposed. The microswimmers show propulsion under full spectrum of visible light with 17 times lower intensity than the mean solar intensity. They propel by breaking down water into oxygen and oxide radicals, which enables their potential applications for photocatalysis and drug delivery. The microswimmers are multiwavelength responsive, from the ultraviolet to the infrared region. The direction of swimming changes with the change in the illumination from the visible to UV light. In addition to being responsive, they are wavelength steerable and exhibit inherent magnetic properties enabling magnetic steering control of the CoO–TiO2 microswimmers. Thus, these microswimmers, which are propelled under low-intensity visible light, have direction-changing capability using light of different wavelengths, and have steering control capability by external magnetic fields, could be used in future potential applications, such as active and local cargo delivery, active photocatalysis, and hydrogen evolution.
A series of highly graphitized mesoporous carbons was synthesized by self-assembly of polymeric carbon precursors and block copolymer template in the presence of poly(vinylpyrrolidone) (PVP)-coated Prussian blue (PB) nanoparticles used as a graphitization catalyst. Resorcinol and formaldehyde were used as carbon precursors, poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer (Pluronic F127) was employed as a soft template. The carbon precursors were polymerized in hydrophilic domains of block copolymer along with PVP-coated PB nanoparticles, followed by carbonization. This recipe gave carbons with cylindrical mesopores created by thermal decomposition of the soft template, and with PB-derived iron oxide nanoparticles. In addition, the presence of iron species catalyzed graphitization at relatively low temperature. The XRD and TEM measurements revealed that the resulting carbons obtained with smaller amounts of PB exhibited ordered mesostructures with relatively high degree of graphitization; however, exceedingly graphitic carbons with disordered mesopores were obtained with higher amounts of PB. Furthermore, wide-angle XRD measurements and TGA analysis provided evidence that graphitization took place at 600 °C, which is considered to be a very low temperature for the graphitization process. N2 adsorption and TGA analysis showed that the aforementioned carbons exhibited high surface area (reaching 621 m2/g) and an extremely high percentage of graphitic domains (approaching 87%). Interestingly, the carbon prepared with larger amount of PB showed magnetic properties. Electrochemical measurements performed on these carbons for double layer capacitors showed somewhat rectangular shape of cyclic voltammetry (CV) curves with a large capacitance of 211 F/g in 1 M H2SO4 electrolyte.
BackgroundSkeletal muscle wound healing is dependent on complex interactions between fibroblasts, myofibroblasts, myogenic cells, and cytokines, such as TGF-β1. This study sought to clarify the impact of TGF-β1 signaling on skeletal muscle cells and discern between the individual contributions of fibroblasts and myofibroblasts to myogenesis when in co-culture with myogenic cells. 3D tissue-engineered models were compared to equivalent 2D culture conditions to assess the efficacy of each culture model to predictively recapitulate the in vivo muscle environment.MethodsTGF-β1 treatment and mono-/co-cultures containing human dermal fibroblasts or myofibroblasts and C2C12 mouse myoblasts were assessed in 2D and 3D environments. Three culture systems were compared: cell monolayers grown on 2D dishes and 3D tissues prepared via a self-assembly method or collagen 1-based hydrogel biofabrication. qPCR identified gene expression changes during fibroblast to myofibroblast and myoblast differentiation between culture conditions. Changes to cell phenotype and tissue morphology were characterized via immunostaining for myosin heavy chain, procollagen, and α-smooth muscle actin. Tissue elastic moduli were measured with parallel plate compression and atomic force microscopy systems, and a slack test was employed to quantify differences in tissue architecture and integrity.ResultsTGF-β1 treatment improved myogenesis in 3D mono- and co-cultures containing muscle cells, but not in 2D. The 3D TGF-β1-treated co-culture containing myoblasts and myofibroblasts expressed the highest levels of myogenin and collagen 1, demonstrating a greater capacity to drive myogenesis than fibroblasts or TGF-β1-treatment in monocultures containing only myoblasts. These constructs possessed the greatest tissue stability, integrity, and muscle fiber organization, as demonstrated by their rapid and sustained shortening velocity during slack tests, and the highest Young’s modulus of 6.55 kPA, approximate half the stiffness of in situ muscle. Both self-assembled and hydrogel-based tissues yielded the most multinucleated, elongated, and aligned muscle fiber histology. In contrast, the equivalent 2D co-culture model treated with TGF-β1 completely lacked myotube formation through suppression of myogenin gene expression.DiscussionThese results show skeletal muscle regeneration can be promoted by treating myogenic cells with TGF-β1, and myofibroblasts are superior enhancers of myogenesis than fibroblasts. Critically, both TGF-β1 treatment and co-culturing skeletal muscle cells with myofibroblasts can serve as myogenesis accelerators across multiple tissue engineering platforms. Equivalent 2D culture systems cannot replicate these affects, however, highlighting a need to continually improve in vitro models for skeletal muscle development, discovery of therapeutics for muscle regeneration, and research and development of in vitro meat products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.