Controlling autonomous propulsion of microswimmers is essential for targeted drug delivery and applications of micro/nanomachines in environmental remediation and beyond. Herein, we report two-dimensional (2D) carbon nitride-based Janus particles as highly efficient, light-driven microswimmers in aqueous media. Due to the superior photocatalytic properties of poly(heptazine imide) (PHI), the microswimmers are activated by both visible and ultraviolet (UV) light in conjunction with different capping materials (Au, Pt, and SiO2) and fuels (H2O2 and alcohols). Assisted by photoelectrochemical analysis of the PHI surface photoreactions, we elucidate the dominantly diffusiophoretic propulsion mechanism and establish the oxygen reduction reaction (ORR) as the major surface reaction in ambient conditions on metal-capped PHI and even with TiO2-based systems, rather than the hydrogen evolution reaction (HER), which is generally invoked as the source of propulsion under ambient conditions with alcohols as fuels. Making use of the intrinsic solar energy storage ability of PHI, we establish the concept of photocapacitive Janus microswimmers that can be charged by solar energy, thus enabling persistent light-induced propulsion even in the absence of illumination—a process we call “solar battery swimming”—lasting half an hour and possibly beyond. We anticipate that this propulsion scheme significantly extends the capabilities in targeted cargo/drug delivery, environmental remediation, and other potential applications of micro/nanomachines, where the use of versatile earth-abundant materials is a key prerequisite.
We propose two-dimensional poly(heptazine imide) (PHI) carbon nitride microparticles as light-driven microswimmers in various ionic and biological media. Their high-speed (15 to 23 micrometer per second; 9.5 ± 5.4 body lengths per second) swimming in multicomponent ionic solutions with concentrations up to 5 M and without dedicated fuels is demonstrated, overcoming one of the bottlenecks of previous light-driven microswimmers. Such high ion tolerance is attributed to a favorable interplay between the particle’s textural and structural nanoporosity and optoionic properties, facilitating ionic interactions in solutions with high salinity. Biocompatibility of these microswimmers is validated by cell viability tests with three different cell lines and primary cells. The nanopores of the swimmers are loaded with a model cancer drug, doxorubicin (DOX), resulting in a high (185%) loading efficiency without passive release. Controlled drug release is reported under different pH conditions and can be triggered on-demand by illumination. Light-triggered, boosted release of DOX and its active degradation products are demonstrated under oxygen-poor conditions using the intrinsic, environmentally sensitive and light-induced charge storage properties of PHI, which could enable future theranostic applications in oxygen-deprived tumor regions. These organic PHI microswimmers simultaneously address the current light-driven microswimmer challenges of high ion tolerance, fuel-free high-speed propulsion in biological media, biocompatibility, and controlled on-demand cargo release toward their biomedical, environmental, and other potential applications.
Light‐driven microswimmers have garnered attention for their potential use in various applications, such as environmental remediation, hydrogen evolution, and targeted drug delivery. Janus hollow mesoporous TiO2/Au (JHP–TiO2–Au) microswimmers with enhanced swimming speeds under low‐intensity ultraviolet (UV) light are presented. The swimmers show enhanced swimming speeds both in presence and absence of H2O2. The microswimmers move due to self‐electrophoresis when UV light is incident on them. There is a threefold increase in speed of JHP–TiO2–Au microswimmers in comparison with Janus solid TiO2/Au (JS–TiO2–Au) microswimmers. This increase in their speed is due to the increase in surface area of the porous swimmers and their hollow structure. These microswimmers are also made steerable by using a thin Co magnetic layer. They can be used in potential environmental applications for active photocatalytic degradation of methylene blue and targeted active drug delivery of an anticancer drug (doxurobicin) in vitro in H2O2 solution. Their increased speed from the presence of a hollow mesoporous structure is beneficial for future potential applications, such as hydrogen evolution, selective heterogeneous photocatalysis, and targeted cargo delivery.
The motion of nanomotors triggered by light sources will provide new alternative routes to power nanoarchitectures without the need of chemical fuels. However, most light-driven nanomotors are triggered by UV-light, near infrared reflection (NIR) or laser sources. We demonstrate that nanocap shaped Au/TiO2 nanomotors (175 nm in diameter) display increased Brownian motion in the presence of broad spectrum visible light. The motion results from the surface plasmon resonance (SPR) effect leading to self-electrophoresis between the Au and TiO2 layers, a mechanism called plasmonic photocatalytic effect in the field of photocatalysis. This mechanism has been experimentally characterized by electron energy loss spectroscopy (EELS), energy-filtered transmission electron microscopy (EFTEM) and optical video tracking. We also studied this mechanism in a more theoretical manner using numerical finite-difference timedomain (FDTD) simulations. The ability to power nanomaterials with visible light may result in entirely new applications for externally powered micro/nanomotors.
While current light-driven microswimmers require high-intensity light, UV light, or toxic fuels to propel them, powering them with low-intensity UV-free visible light without fuels is essential to enable their potential high-impact applications. Therefore, in this study, a new material for light-driven microswimmers in the form of CoO is introduced. Janus CoO–TiO2 microswimmers powered with low-intensity, UV-free visible light inside water without using any toxic fuels like H2O2 is proposed. The microswimmers show propulsion under full spectrum of visible light with 17 times lower intensity than the mean solar intensity. They propel by breaking down water into oxygen and oxide radicals, which enables their potential applications for photocatalysis and drug delivery. The microswimmers are multiwavelength responsive, from the ultraviolet to the infrared region. The direction of swimming changes with the change in the illumination from the visible to UV light. In addition to being responsive, they are wavelength steerable and exhibit inherent magnetic properties enabling magnetic steering control of the CoO–TiO2 microswimmers. Thus, these microswimmers, which are propelled under low-intensity visible light, have direction-changing capability using light of different wavelengths, and have steering control capability by external magnetic fields, could be used in future potential applications, such as active and local cargo delivery, active photocatalysis, and hydrogen evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.