In closed hydroponic systems, periodic readjustment of nutrient solution is necessary to continuously provide stable environment to plant roots because the interaction between plant and nutrient solution changes the rate of ions in it. The traditional method is to repeat supplying small amount of premade concentrated nutrient solution, measuring total electric conductivity and pH of the tank only. As it cannot control the collapse of ion rates, recent researches try to measure the concentration of individual components to provide insufficient ions only. However, those approaches use titrationlike heuristic approaches, which repeat adding small amount of components and measuring ion density a lot of times for a single control input. Both traditional and recent methods are not only time-consuming, but also cannot predict chemical reactions related with control inputs because the nutrient solution is a nonlinear complex system, including many precipitation reactions and complicated interactions. We present a continuous network model of the nutrient solution system, whose reactions are described as differential equations. The model predicts molar concentration of each chemical components and total dissolved solids with low error. This model also can calculate the amount of chemical compounds needed to produce a desired nutrient solution, by reverse calculation from dissolved ion concentrations.
High concentration agricultural facilities such as vertical farms or plant factories consider hydroponic techniques as optimal solutions. Although closed-system dramatically reduces water consumption and pollution issues, it has ion-ratio related problem. As the root absorbs individual ions with different rate, ion rate in a nutrient solution should be adjusted periodically. But traditional method only considers pH and electrical conductivity to adjust the nutrient solution, leading to ion imbalance and accumulation of excessive salts. To avoid those problems, some researchers have proposed ion-balancing methods which measure and control each ion concentration. However, those approaches do not overcome the innate limitations of ISEs, especially ion interference effect. An anion sensor is affected by other anions, and the error grows larger in higher concentration solution. A machine learning approach to modify ISE data distorted by ion interference effect is proposed in this paper. As measurement of TDS value is relatively robust than any other signals, we applied TDS as key parameter to build a readjustment function to remove the artifact. Once a readjustment model is established, application on ISE data can be done in real time. Readjusted data with proposed model showed about 91.6 ~ 98.3% accuracies. This method will enable the fields to apply recent methods in feasible status.
BackgroundControlling complex molecular regulatory networks is getting a growing attention as it can provide a systematic way of driving any cellular state to a desired cell phenotypic state. A number of recent studies suggested various control methods, but there is still deficiency in finding out practically useful control targets that ensure convergence of any initial network state to one of attractor states corresponding to a desired cell phenotype.ResultsTo find out practically useful control targets, we introduce a new concept of phenotype control kernel (PCK) for a Boolean network, defined as the collection of all minimal sets of control nodes having their fixed state values that can generate all possible control sets which eventually drive any initial state to one of attractor states corresponding to a particular cell phenotype of interest. We also present a detailed method with which we can identify PCK in a systematic way based on the layered network and converging tree of a given network. We identify all candidates for control nodes from the layered network and then hierarchically search for all possible minimal sets by using the converging tree. We show the usefulness of PCK by applying it to cell proliferation and apoptosis signaling networks and comparing the results with other control methods. PCK is the unique control method for Boolean network models that can be used to identify all possible minimal sets of control nodes. Interestingly, many of the minimal sets have only one or two control nodes.ConclusionsBased on the new concept of PCK, we can identify all possible minimal sets of control nodes that can drive any molecular network state to one of multiple attractor states representing a same desired cell phenotype.Electronic supplementary materialThe online version of this article (10.1186/s12918-018-0576-8) contains supplementary material, which is available to authorized users.
This paper presents a signal-processing method to remove pan-artifact on ISEs with artificial neural networks. An Ion Selective Electrode is used to investigate the concentration of a specific ion from aqueous solution, by measuring the Nernst potential along the glass membrane. However, Application of ISE on a multi-ion solution has problem. First problem is a chemicophysical artifact which is called ion interference effect. Electrically charged particles interact with each other and flows through the glass membrane of different ISEs. Second problem is that movement of liquid directly interfere the glass membrane, causing inaccurate voltage measurement. When multiple ISEs are dipped into same solution, a sensor’s signal emission interference voltage measurement of other sensors. Therefore, an ISE is recommended to applied on single-ion solution, without any other sensors applied at the same time. Deep learning approach can remove both artifacts at the same time. The proposed method is designed to remove complex artifacts with one-shot calculation, with MAPE less than 1.8%, and R2 as 0.997. A randomly chosen value of AI-predicted value has MAPE less than 5% (p-value 0.016).
Modern control theories such as systems engineering approaches try to solve nonlinear system problems by revelation of causal relationship or co-relationship among the components; most of those approaches focus on control of sophisticatedly modeled white-boxed systems. We suggest an application of actor-critic reinforcement learning approach to control a nonlinear, complex and black-boxed system. We demonstrated this approach on artificial green-house environment simulator all of whose control inputs have several side effects so human cannot figure out how to control this system easily. Our approach succeeded to maintain the circumstance at least 20 times longer than PID and Deep Q Learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.