Cell state transition is at the core of biological processes in metazoan, which includes cell differentiation, epithelial-to-mesenchymal transition (EMT) and cell reprogramming. In these cases, it is important to understand the molecular mechanism of cellular stability and how the transitions happen between different cell states, which is controlled by a gene regulatory network (GRN) hard-wired in the genome. Here we use Boolean modeling of GRN to study the cell state transition of EMT and systematically compare four available methods to calculate the cellular stability of three cell states in EMT in both normal and genetically mutated cases. The results produced from four methods generally agree but do not totally agree with each other. We show that distribution of one-degree neighborhood of cell states, which are the nearest states by Hamming distance, causes the difference among the methods. From that, we propose a new method based on one-degree neighborhood, which is the simplest one and agrees with other methods to estimate the cellular stability in all scenarios of our EMT model. This new method will help the researchers in the field of cell differentiation and cell reprogramming to calculate cellular stability using Boolean model, and then rationally design their experimental protocols to manipulate the cell state transition.
Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366–377. doi: 10.1002/wsbm.1346For further resources related to this article, please visit the WIREs website.
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these “undruggable” targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
BackgroundControlling complex molecular regulatory networks is getting a growing attention as it can provide a systematic way of driving any cellular state to a desired cell phenotypic state. A number of recent studies suggested various control methods, but there is still deficiency in finding out practically useful control targets that ensure convergence of any initial network state to one of attractor states corresponding to a desired cell phenotype.ResultsTo find out practically useful control targets, we introduce a new concept of phenotype control kernel (PCK) for a Boolean network, defined as the collection of all minimal sets of control nodes having their fixed state values that can generate all possible control sets which eventually drive any initial state to one of attractor states corresponding to a particular cell phenotype of interest. We also present a detailed method with which we can identify PCK in a systematic way based on the layered network and converging tree of a given network. We identify all candidates for control nodes from the layered network and then hierarchically search for all possible minimal sets by using the converging tree. We show the usefulness of PCK by applying it to cell proliferation and apoptosis signaling networks and comparing the results with other control methods. PCK is the unique control method for Boolean network models that can be used to identify all possible minimal sets of control nodes. Interestingly, many of the minimal sets have only one or two control nodes.ConclusionsBased on the new concept of PCK, we can identify all possible minimal sets of control nodes that can drive any molecular network state to one of multiple attractor states representing a same desired cell phenotype.Electronic supplementary materialThe online version of this article (10.1186/s12918-018-0576-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.