SUMMARYGraph matching is to find an independent edge set in a graph. It can be used for various purposes such as finding a cover in a graph, chemical structural computations, multi-level graph partitioning and so on. When a graph is too large to be handled by a single machine, we should use multiple machines. In this paper, we use Pregel, a cloud graph processing architecture which is able to process massive scale graph data in scalable and fault-tolerant ways. We propose a parallel maximal matching algorithm described in the Pregel's vertex-centric BSP model. We test our algorithm on an 8 node cluster and the results show that our algorithm can realize high quality matching for a large graph in a short time. Also, our algorithm is linearly scalable with the number of machines.
SUMMARYFor an efficient processing of large data in a distributed system, Hadoop MapReduce performs task scheduling such that tasks are distributed with consideration of the data locality. The data locality, however, is limitedly exploited, since it is pursued one node at a time basis without considering the global optimality. In this paper, we propose a novel task scheduling algorithm that globally considers the data locality. Through experiments, we show our algorithm improves the performance of MapReduce in various situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.