No abstract
DETR is the first end-to-end object detector using a transformer encoder-decoder architecture and demonstrates competitive performance but low computational efficiency on high resolution feature maps. The subsequent work, Deformable DETR, enhances the efficiency of DETR by replacing dense attention with deformable attention, which achieves 10× faster convergence and improved performance. Deformable DETR uses the multiscale feature to ameliorate performance, however, the number of encoder tokens increases by 20× compared to DETR, and the computation cost of the encoder attention remains a bottleneck. In our preliminary experiment, we observe that the detection performance hardly deteriorates even if only a part of the encoder token is updated. Inspired by this observation, we propose Sparse DETR that selectively updates only the tokens expected to be referenced by the decoder, thus help the model effectively detect objects. In addition, we show that applying an auxiliary detection loss on the selected tokens in the encoder improves the performance while minimizing computational overhead. We validate that Sparse DETR achieves better performance than Deformable DETR even with only 10% encoder tokens on the COCO dataset. Albeit only the encoder tokens are sparsified, the total computation cost decreases by 38% and the frames per second (FPS) increases by 42% compared to Deformable DETR. Code is available at https://github.com/kakaobrain/sparse-detr.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image.In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods. The code will be released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.