A compact and power-efficient serial I/O targeting dense silicon carrier interconnects is reported. Based on expected channel characteristics, the proposed I/O features low-impedance transmitter termination, high-impedance receiver termination, and a receiver with modified DFE with IIR filter feedback (DFE-IIR). The DFE-IIR receiver uses a single additional IIR filter feedback tap to compensate many postcursors without paying the power and area penalty that would be incurred with a conventional high tap-count DFE. Equalization capabilities of the compact I/O at 10 Gb/s are demonstrated over various channels including conventional chip-to-chip and backplane links with half-baud losses of up to 27 dB. Finally, a transmitter-receiver pair operating over a 40-mm on-chip emulated silicon carrier channel was demonstrated to 8.9 Gb/s, at a link power efficiency of 1.9 mW/Gb/s. Index Terms-Backplane channel communication, chip-to-chip communication, compact I/O, continuous-time IIR filter, decision feedback equalizer, serial link, silicon carrier links.
Abstract-This work describes the architecture and circuit implementation of a high-data-rate, energy-efficient equalized transceiver for high-loss dispersive channels, such as RC-limited on-chip interconnects or silicon-carrier packaging modules. The charge-injection transmitter directly conducts pre-emphasis current from the supply into the channel, eliminating the power overhead of analog current subtraction in conventional transmit pre-emphasis, while significantly relaxing the driver coefficient accuracy requirements. The transmitter utilizes a power efficient non-linear driver by compensating non-linearity with pre-distorted equalization coefficients. A trans-impedance amplifier at the receiver achieves low static power consumption, large signal amplitude, and high bandwidth by mitigating limitations of purely-resistive termination. A test chip is fabricated in 90-nm bulk CMOS technology and tested over a 10-mm, 2-m pitched on-chip differential wire. The transceiver consumes 0.37-0.63 pJ/b with 4-6 Gb/s/ch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.