BackgroundTriathlon is an increasingly popular sport at both the elite and the recreational level. However, there have been few high-quality studies of injuries and illnesses among triathletes.ObjectiveTo register overuse problems and acute injuries among iron-distance triathletes throughout a training season leading up to a major event.MethodsA 26-week prospective cohort study was conducted including 174 participants of the 2011 Norseman Xtreme Triathlon. Data on overuse injuries located in the shoulder, lower back, thigh, knee and lower leg were collected every second week using the Oslo Sports Trauma Research Center Overuse Injury Questionnaire. Illnesses, acute injuries and overuse problems affecting other anatomical areas were also recorded using standard injury surveillance methods.ResultsThe average prevalence of overuse problems was 56% (95% CI 51 to 61) (490 cases). The average prevalence of substantial overuse problems was 20% (95% CI 18 to 21) (165 cases). The most prevalent sites of overuse problems were the knee (25%), lower leg (23%) and lower back (23%). The acute injury incidence was 0.97 injuries per 1000 h of training (36 cases) and 1.02 injuries per 1000 h of competition (5 cases). A majority of moderate and severe acute injuries were located at the knee, shoulder/clavicle and sternum/ribs. The predominant types of acute injuries were contusions, fractures and sprains. The incidence of illness was 5.3/1000 athlete-days (156 cases).ConclusionsOveruse problems constitute the majority of injury cases among iron-distance triathletes, and are far more common than acute injuries and illnesses. The most prevalent sites of injury in the present study were the knee, lower leg, lower back and shoulder. Future injury prevention studies in iron-distance triathletes should focus on these areas.
The quantitative analyses and other applications described in this article indicate a useful future for the ionmicroprobe mass analyzer in many areas of the science of solid materials. It should be possible to analyze all the elements quantitatively, but detection sensitivities will vary depending on the matrix, the element, and the polarity of the sputtered ion being studied. Most elements will have optimum yields in the spectrum of positive sputtered ions, and will be detected in concentrations of parts per million in micrometer-sized sampling areas. Electronegative elements will be detected with similar sensitivities in the spectrum of negative sputtered ions, but inert gases, which are ionized with difficulty and have small electron affinities, will be detected with considerably poorer sensitivities. In general, it will be possible to measure isotope ratios without chemical separation of the constituent elemrents of the sample. The precision of an ion microprobe isotope ratio measurement depends basically on the counting rates involved, and its accuracy can approach its precision if auxiliary standards are used. The isotope ratios of different elements can be compared readily because of the small mass-discrimination effects of the system. Surface layers can be quantitatively analyzed in depth with a resolution of tens of angstroms; hence, it should be possible to study the migration of atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.