A mixed cocktail of four strains of Listeria monocytogenes was resuspended in product purge and added to a variety of ready-to-eat (RTE) meat products, including turkey, ham, and roast beef. All products were vacuum sealed in shrink-wrap packaging bags, massaged to ensure inoculum distribution, and processed by submersion heating in a precision-controlled steam-injected water bath. Products were run in pairs at various time-temperature combinations in either duplicate or triplicate replications. On various L. monocytogenes-inoculated RTE deli meats, we were able to achieve 2- to 4-log cycle reductions when processed at 195 degrees F (90.6 degrees C), 200 degrees F (93.3 degrees C), or 205 degrees F (96.1 degrees C) when heated from 2 to 10 min. High-level inoculation with L. monocytogenes (approximately 10(7) CFU/ml) ensured that cells infiltrated the least processed surface areas, such as surface cuts, folds, grooves, and skin. D- and z-value determinations were made for the Listeria cocktail resuspended in product purge of each of the three meat categories. However, reduction of L. monocytogenes in product challenge studies showed much less reduction than was observed during the decimal reduction assays and was attributed to a combination of surface phenomena, including surface imperfections, that may shield bacteria from the heat and the migration of chilled purge to the product surface. The current data indicate that minimal heating regimens of 2 min at 195 to 205 degrees F can readily provide 2-log reductions in most RTE deli meats we processed and suggest that this process may be an effective microbial intervention against L. monocytogenes on RTE deli-style meats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.