We investigated 12 unclassified B[e] stars or candidates, 8 from the Galaxy, 2 from the Large Magellanic Cloud (LMC) and 2 from the Small Magellanic Cloud (SMC). Based on the analysis of high-resolution spectroscopic (FEROS) and photometric data, we confirmed the presence of the B[e] phenomenon for all objects of our sample, except for one (IRAS 07455-3143). We derived their effective temperature, spectral type, luminosity class, interstellar extinction and, using the distances from Gaia DR2, we obtained their bolometric magnitude, luminosity and radius. Modeling of the forbidden lines present in the FEROS spectra revealed information about the kinematics and geometry of the circumstellar medium of these objects. In addition, we analyzed the light curves of four stars, finding their most probable periods. The evolutionary stage of 11 stars of our sample is suggested from their position on the HR diagram, taking into account evolutionary tracks of stars with solar, LMC and SMC metallicities. As results, we identified B and B[e] supergiants, B[e] stars probably at the main sequence or close to its end, post-AGB and HAeB[e] candidates, and A[e] stars in the main sequence or in the pre-main sequence. However, our most remarkable results are the identification of the third A[e] supergiant (ARDB 54, the first one in the LMC), and of an "LBV impostor" in the SMC (LHA 115-N82).
Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R ∼ 1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1 m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.