Electrostatic interactions in monolayers and vesicles of acidic phospholipids are studied by thermodynamical and optical techniques in conjunction with numerical calculations. A nonmonotonic ionic strength dependence with an extremum at 0.1 M (NaC1) is observed for the phase transition temperature of vesicles as well as for the surface pressure of monolayers at low molecular density. This finding is in accordance with the calculations predicting the dominance of charge screening by monovalent counterions only for concentrations above 0.1 M. For lower sak content, however, its increase causes an elevation of the degree of dissociation and thus also electrostatic repulsion. This leads to a higher surface pressure, a lower transition temperature and a smaller size of solid domains observed in the liquid/solid coexistence range of monolayers. This supports the previously published idea, that finite size and repulsion of the domains arise from a different surface charge density in fluid and solid lipid phases.
For the first time, phospholid monolayers at the air/water interface have been studied by x-ray diffraction and reflection all along the isotherm from the laterally isotropic fluid (the so-called LE phase) to the ordered phases. The model used to analyze the data, and the accuracy of the parameters deduced, were tested by comparing the results obtained with two lipids having the same head group but different chain lengths. Compression of the fluid phase leads predominantly to a change of thickness of the hydrophobic moiety, much less of its density, with the head group extension remaining constant. The main transition involves a considerable increase (approximately 10%) of the electron density in the hydrophobic region, a dehydration of the head group and a positional ordering of the aliphatic tails, albeit with low coherence lengths (approximately 10 spacings). On further compression of the film, the ordered phase undergoes a continuous transition. This is characterized by an increase in positional ordering, a discontinuous decrease in lateral compressibility, a decrease in chain tilt angle with respect to the surface normal towards zero and probably also a head group dehydration and ordering.
Monolayers of the phospholipid dimyristoyl phosphatidic acid on the surface of water have been studied by a combination of the new techniques of synchrotron x-ray diffraction and fluorescence microscopy with classical surface pressure data. The pressure vs. area isotherm changes slope at the surface pressures pi c and pi s. The optical technique demonstrates that between pi c and pi s the fluid phase coexists with a denser "gel" phase. Electron diffraction data have shown that the gel phase has bond orientational order over tens of micrometers. However, the x-ray data demonstrate that positional correlations extend only over tens of angstroms. Thus, the gel phase is not crystalline. Above pi s a solid phase is formed with a positional correlation range that is eight times longer for the chemically purest films.
We present images of the polar or headgroup regions of bilayers of dimyristoyl-phosphatidylethanolamine (DMPE), deposited by Langmuir-Blodgett deposition onto mica substrates at high surface pressures and imaged under water at room temperature with the optical lever atomic force microscope. The lattice structure of DMPE is visualized with sufficient resolution that the location of individual headgroups can be determined. The forces are sufficiently small that the same area can be repeatedly imaged with a minimum of damage. The DMPE molecules in the bilayer appear to have relatively good long-range orientational order, but rather short-range and poor positional order. These results are in good agreement with x-ray measurements of unsupported lipid monolayers on the water surface, and with electron diffraction of adsorbed monolayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.