Waste-heat recovery (WHR) systems based on the organic Rankine cycle (ORC) improve the thermal efficiency of natural gas engines because they generate additional electric power without consuming more gas fuel. However, to obtain a cost-effective design, thermoeconomic criteria must be considered to facilitate installation, operation, and penetration into real industrial contexts. Therefore, a thermo-economic analyses of a simple ORC (SORC), ORC with recuperator (RORC) and a double-pressure ORC (DORC) integrated with a 2 MW Jenbacher JMS 612 GS-N. L is presented using toluene as the organic working fluid. In addition, the cost rate balances for each system are presented in detail, with the analysis of some thermoeconomics indicator such as the relative cost difference, the exergoeconomic factor, and the cost rates of exergy destruction and exergy loss. The results reported opportunities to improve the thermoeconomic performance in the condenser and turbine, because the exergoeconomic factor for the condenser and the turbine were in the RORC (0.41 and 0.90), and DORC (0.99 and 0.99) respectively, which implies for the RORC configuration that 59% and 10% of the increase of the total cost of the system is caused by the exergy destruction of these devices. Also, the pumps present the higher values of relative cost difference and exergoeconomic factor for B1 (rk = 8.5, fk = 80%), B2 (rk = 8, fk = 85%).
This paper presents the application of a systematic methodology to obtain a semi-physical model of phenomenological base for a 2 MW internal combustion engine to generate electric power operating with natural gas, as a function of the average thermodynamic value normally measured in industrial applications. Specifically, the application of the methodology is focused on the cylinders, exhaust manifold, and turbocharger turbine sections. The proposed model was validated with actual operating data, obtaining an error rate not exceeding 5%, which allow a thermal characterization of the Jenbacher JMS 612 GS-N based on the model. A parametric analysis is conducted; considering the volumetric efficiency, the output electric power, the effective efficiency, the exhaust gas temperature, the turbine mass flow, the specific fuel consumption under the nominal operation conditions, which is 1.16 bar in the gas pressure, 65 °C in the cooling water temperature, 35 °C in the average ambient temperature, and 1500 rpm. The results of this model can be used to evaluate the thermodynamic performance parameters of waste heat recovery systems. On the other hand, new control strategies and the implementation of state observers for the detection and diagnosis of failures can be developed based on the proposed model.
The waste heat recovery system (WHRS) is a good alternative to provide a solution to the waste energy emanated in the exhaust gases of the internal combustion engine (ICE). Therefore, it is useful to carry out research to improve the thermal efficiency of the ICE through a WHRS based on the organic Rankine cycle (ORC), since this type of system takes advantage of the heat of the exhaust gases to generate electrical energy. The organic working fluid selection was developed according to environmental criteria, operational parameters, thermodynamic conditions of the gas engine, and investment costs. An economic analysis is presented for the systems operating with three selected working fluids: toluene, acetone, and heptane, considering the main costs involved in the design and operation of the thermal system. Furthermore, an exergo-advanced study is presented on the WHRS based on ORC integrated to the ICE, which is a Jenbacher JMS 612 GS-N of 2 MW power fueled with natural gas. This advanced exergetic analysis allowed us to know the opportunities for improvement of the equipment and the increase in the thermodynamic performance of the ICE. The results show that when using acetone as the organic working fluid, there is a greater tendency of improvement of endogenous character in Pump 2 of around 80%. When using heptane it was manifested that for the turbine there are near to 77% opportunities for improvement, and the use of toluene in the turbine gave a rate of improvement of 70%. Finally, some case studies are presented to study the effect of condensation temperature, the pinch point temperature in the evaporator, and the pressure ratio on the direct, indirect, and fixed investment costs, where the higher investment costs were presented with the acetone, and lower costs when using the toluene as working fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.