Biogas power generation is renewable energy made from biological materials. Biogas power production is technology which helps in development of sustainable energy supply systems. This paper develops Genetic Algorithm optimization model for Biogas electrical power generation of Ilora in Oyo, Oyo state. The production is done using co-digestion system of pig dung and Poultry dung under the process of anaerobic digestion. The pig dung and poultry dung were mixed 50:50%. MATLAB and VISUAL BASIC Software was used to carry out simulations to develop optimized Genetic Algorithm model for Biogas power production with aims to improving electricity accessibility and durability of the community. The results of the research reveal the Empirical Biogas power production without and with Genetic Algorithm optimization. The Result showed that biogas electrical power generated without and with Genetic Algorithm Optimization were 5KW and 11.18KW respectively. The biogas power generation was increased by 6.18KW, which is 38.2% increase after Genetic Algorithm optimization. The results show the application of the Genetic Algorithm optimization model which can be used to improving Biogas power generation when amount of methane gas produced from the animal dung varies with speed of thermal rotating shaft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.