This paper presents finite element analyses of two-dimensional (plane strain), elastic-plastic, repeated, frictionless rolling contact. The analysis employs the elastic-perfectly plastic, cycle and strain-amplitude-independent material used in the Merwin and Johnson analysis but avoids several assumptions made by these workers. Repeated rolling contacts are simulated by multiple translations of a semielliptical Hertzian pressure distribution. Results at p0/k = 3.5, 4.35, and 5.0 are compared to the Merwin and Johnson prediction. Shakedown is observed at p0/k = 3.5, but the comparisons reveal significant differences in the amount and distribution of residual shear strain and forward flow at p0/k = 4.35 and p0/k = 5.0. The peak incremental, shear strain per cycle for steady state is five times the value calculated by Merwin and Johnson, and the plastic strain cycle is highly nonsymmetric.
A three-dimensional finite element model has been developed for the purpose of analyzing the stress distribution in a human mandibular right first molar. The model takes into account the non-symmetric geometry and loading, and the material inhomogeneities of the tooth. Comparisons with existing two-dimensional analyses are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.