A rapid spectrophotometric procedure is described for the estimation of sulfated glycosaminoglycans in cartilage cultures. Papain digestion of tissue or culture medium provides glycosaminoglycans in solution for assay; an aliquot of the digest is mixed with the dye 1,9-dimethylmethylene blue. The assay is based on the metachromatic shift in absorption maximum which occurs when the dye is complexed with sulfated glycosaminoglycans. The reagent is stable, and the method is substantially free from interference, is sensitive to less than 1 microgram (4 micrograms/ml) of chondroitin sulfate, and provides a simple alternative to the traditional methods for glycosaminoglycan determinations.
alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not show the proteinase-binding activity characteristic of the intact alpha 2M. F-alpha 2M was less easily dissociated than was S-alpha 2M. S-alpha 2M was readily dissociated to the quarter-subunits by mild reduction, with the formation of 3-4 new thiol groups per subunit. Inact reactive alpha 2M could then be regenerated in high yield by reoxidation of the subunits. F-alpha 2M formed by reaction with a proteinase or ammonium salts was not dissociated under the same conditions, although the interchain disulphide bonds were reduced. If the thiol groups of the quarter-subunits of S-alpha 2M were blocked by carboxymethylation, oxidative reassociation did not occur. Nevertheless treatment of these subunits with methylammonium salts or a proteinase caused the reassembly of half-molecules and intact (F-) tetramers. It is emphasized that F-alpha 2M does not have the properties of a denatured form of the protein...
The protein from chicken egg white that inhibits cysteine proteinases, and has been named 'cystatin', was purified by ovomucin precipitation, affinity chromatography on carboxymethylpapain-Sepharose and chromatofocusing. The final purification step separated two major forms of the protein (pI 6.5 and 5.6), with a total recovery of about 20% from egg white. By use of affinity chromatography and immunodiffusion it was shown that the inhibitor is also present at low concentrations in the serum of male and female chickens. Tryptic peptide maps of the separated forms 1 and 2 of egg-white cystatin were closely similar, and each form had the N-terminal sequence Ser-Glx-Asx. The two forms showed complete immunological identity, and neither contained carbohydrate. Ki values for the inhibition of cysteine proteinases were as follows: papain (less than 1 X 10(-11)M), cathepsin B (8 X 10(-10)M), cathepsin H (about 2 X 10(-8)M) and cathepsin L (about 3 X 10(-12)M). Some other cysteine proteinases, and several non-cysteine proteinases, were found not to be significantly inhibited by cystatin. The inhibition of the exopeptidase dipeptidyl peptidase I by cystatin was confirmed and the Ki found to be 2 X 10(-10)M. Inhibitor complexes with active cysteine proteinases and the inactive derivatives formed by treatment with iodoacetate, E-64 [L-trans-epoxysuccinylleucylamido(4-guanidino)butane] and benzyloxycarbonylphenylalanylalanyldiazomethane were demonstrated by isoelectric focusing and cation-exchange chromatography. The complexes dissociated in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with or without reduction) with no sign of fragmentation of the inhibitor. Cystatin was found not to contain a free thiol group, and there was no indication that disulphide exchange plays any part in the mechanism of inhibition.
It is shown that non-proteolytic proteins can become covalently linked to alpha 2M (alpha 2-macroglobulin) during its reaction with proteinases, and that this probably occurs by the mechanism that leads to the covalent linking of proteinases described previously [Salvesen & Barrett (1980) Biochem. J. 187, 695-701]. The covalent linking of trypsin was at least partly dependent on the presence of unblocked lysine side chains on the protein. The covalent linking of proteinases was inhibited by nucleophiles of low Mr, and these compounds were themselves linked to alpha 2M in a molar ratio approaching one per quarter subunit. Peptide "mapping" indicated that the site of proteinase-mediated incorporation of the amines was the same as that at which methylamine is incorporated in the absence of a proteinase. The nucleophile-reactive site revealed in alpha 2M after reaction with a proteinase was shown to decay with a t1/2 of 112 s, at pH 7.5. After the reaction with a proteinase or with methylamine, a free thiol group was detectable on each subunit of alpha 2M. We propose that the site for incorporation of methylamine in each subunit is a thiol ester, which in S-alpha 2M (the electrophoretically "slow" form) is sterically shielded from reaction with large nucleophiles, but is revealed as a highly reactive group, free from steric hindrance, after the proteolytic cleavage. We have designated the activated species of the molecule "alpha 2M".
Radiolabelled anhydrotrypsin was bound by alpha 2M (alpha 2-macroglobulin) sufficiently tightly to resist separation during gel electrophoresis; 2 mol of anhydrotrypsin were bound/mol of alpha 2M, but the interaction differed in important respects from that between active proteinases and alpha 2M. Anhydrotrypsin was bound by the electrophoretically 'fast' form of alpha 2M, although much less effectively than by the 'slow' form. The inactive enzyme was displaced from alpha 2M by trypsin inhibitor, the order of effectiveness being aprotinin > soya-bean trypsin inhibitor > benzamidine. Saturation of alpha 2M with anhydrotrypsin did not prevent subsequent binding and inhibition of active trypsin by the alpha 2M, and the anhydrotrypsin was not displaced during this reaction. Anhydrotrypsin bound by alpha 2M retained its ability to react with antibodies against trypsin, whereas bound trypsin did not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.