Magnetic Resonance (MR) elastography is a method for measuring tissue elasticity via phase images acquired with an MR scanner. The propagation of periodic mechanical waves through the tissue can be captured by means of a modified phase contrast sequence. These waves are generated with a mechanical oscillator (actuator) and coupled into the tissue through the skin. The actuator must be capable of generating a sinusoidal excitation with excellent phase and amplitude stability, while not disturbing the MR imaging process. In this work, an actuator based on a piezoelectric principle was developed. Based on the imaging evaluation of several material samples, the housing for the piezoelectric ceramic was constructed of aluminum. Smaller parts of the housing were manufactured from brass and titanium to fulfill the mechanical constraints. A lever was used to transfer the oscillation generated by the piezoelectric ceramic to the point of excitation. The lever amplifies the piezoelectric motion, allowing for a more compact design. Three different lever designs were characterized by an acceleration sensor both outside and inside the magnet. It was shown that the rigidity of the lever, as determined by its material and form, was decisive in determining the resonant frequency of the system and therefore the maximum practical frequency of operation. It was also shown that the motion of the oscillator is unaffected by the electromagnetic fields of the MR imager. The final design can be placed directly in the magnet bore within a few centimeters of the tissue volume to be imaged without generating significant artifacts. An amplitude range of 0 -1 mm in the frequency range from 0 to over 300 Hz was achieved, sufficient for performing most MR elastography applications.
The paper introduces into the concept of model-based impact estimation of elastic structures. Based on the model of the affected linear structure a robust linear observer technique is applied to estimate the unknown impacts. The complete procedure of impact estimation is shown by simulations. Results of the observer-based estimation of unknown impacts are presented. As a new result, it is observed that the proposed observer technique can generally (but with limitations) be applied to elastic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.