For most of the last forty years, the techniques of Dynamic Nuclear Polarization (DNP) have been confined to particle-physics laboratories building polarized targets, but recently it has been shown that samples similar to a solid target can be transformed into room temperature liquid solutions while retaining a high nuclear polarization. This method of ' 'hyperpolarization' ' is of interest in NMR/MRI/MRS. We describe a 3.35 T DNP/9.4 T MRI installation based on a continuous-flow cryostat, using a standard wide-bore low-field NMR magnet as prepolarizer magnet and a widely available radical as polarizing agent. The interfacing to a rodent scanner requires that the infusion of the polarized solution in the animal be remotely controlled, because of limited access inside the magnet bore. Physiological constraints on the infusion rate can be a serious source of polarization loss, and the discussion of efficiency is therefore limited to that of the prepolarizer itself, i.e., the spin temperatures obtained in the solid state. To put our results in context, we summarize data obtained in targets with different types of radicals, and provide a short review of the DNP mechanisms needed in their discussion.
The aim of this study was to examine the diffusive properties of adjacent muscles at rest, and to determine the relationship between diffusive and architectural properties, which are task-specific to muscles. The principle, second, and third eigenvalues, trace of the diffusion tensor, and two anisotropic parameters, ellipsoid eccentricity (e) and fractional anisotropy (FA), of various muscles in the human calf were calculated by diffusion tensor imaging (DTI). Linear correlations of the calculated parameters to the muscle physiological cross-sectional area (PCSA), which is proportional to maximum muscle force, were performed to ascertain any linear relation between muscle architecture and diffusivity. Images of the left calf were acquired from six healthy male volunteers. Seven muscles were investigated in this study. These comprised the soleus, lateral gastrocnemius, medial gastrocnemius, posterior tibialis, anterior tibialis, extensor digitorum longus, and peroneus longus. All data were presented as the mean and standard error of the mean (SEM). In general, differences in diffusive parameter values occurred primarily between functionally different muscles. A strong correlation was also found between PCSA and the third eigenvalue, e, and FA. A mathematical derivation revealed a linear relationship between PCSA and the third eigenvalue as a result of their dependence on the average radius of all fibers within a single muscle. These findings demonstrated the ability of DTI to differentiate between functionally different muscles in the same region of the body on the basis of their diffusive properties.
The increase of total choline in tumors has become an important biomarker in cancer diagnosis. Choline and choline metabolites can be measured in vivo and in vitro using multinuclear MRS. Recent in vivo 13 C MRS studies using labeled substrates enhanced via dynamic nuclear polarization demonstrated the tremendous potential of hyperpolarization for real-time metabolic studies. The present study demonstrates the feasibility of detecting hyperpolarized 15 N labeled choline in vivo in a rat head at 9.4 T. We furthermore report the in vitro (172 AE 16 s) and in vivo (126 AE 15 s) longitudinal relaxation times. We conclude that with appropriate infusion protocols it is feasible to detect hyperpolarized 15 N labeled choline in live animals.
The diffusive properties of adjacent muscles at rest were evaluated in male (n = 12) and female (n = 12) subjects using diffusion tensor imaging (DTI). The principle, second and third eigenvalues, trace of the diffusion tensor [Tr(D)], and two anisotropic parameters, ellipsoid eccentricity (e) and fractional anisotropy (FA), of various muscles in the human calf were calculated from the diffusion tensor. Seven muscles were investigated in this study from images acquired of the left calf: the soleus, lateral gastrocnemius, medial gastrocnemius, posterior tibialis, anterior tibialis, extensor digitorum longus and peroneus longus. A mathematical model was also derived that relates the eigenvalues of the diffusion tensor to the muscle fiber volume fraction, which is defined as the volume of muscle fibers within a well-defined arbitrary muscle volume. Females on average had higher eigenvalues and Tr(D) compared with males, with the majority of muscles being statistically different between the sexes. In contrast, males on average had higher e and FA than females, with the large plantar flexors--soleus, lateral gastrocnemius, and medial gastrocnemius--producing statistically different results. The behavior of the mathematical model for variations in fiber volume fraction produced similar trends to those seen when the experimental data were fit to the model. The model predicts that a larger volume fraction of skeletal muscle in males is devoted to fibers than in females, but the true underlying source of the gender discrepancy remains unclear. Although the model does not fully account for other transport processes, it does provide some insight into the limiting factors that affect the diffusion of water in skeletal muscle measured by DTI.
MR elastography (MRE) has been shown to be capable of non-invasively measuring tissue elasticity even in deep-lying regions. Although limited studies have already been published examining in vivo muscle elasticity, it is still not clear over what range the in vivo elasticity values vary. The present study intends to produce further information by examining four different skeletal muscles in a group of 12 healthy volunteers in the age range of 27-38 years. The examinations were performed in the biceps brachii, the flexor digitorum profundus, the soleus and the gastrocnemius. The average shear modulus was determined to be 17.9 (+/- 5.5), 8.7 (+/- 2.8), 12.5 (+/- 7.3) and 9.9 (+/- 6.8) kPa for each muscle, respectively. To ascertain the reproducibility of the examination, the stiffness measurements in two volunteers were repeated seven times for the biceps brachii. These examinations yielded a mean shear modulus of 11.3 +/-.7 and 13.3 +/- 4.7 kPa for the two subjects. For elasticity reconstruction, an automated reconstruction algorithm is introduced which eliminates variation due to subjective manual image analysis. This study yields new information regarding the expected variation in muscle elasticity in a healthy population, and also reveals the expected variability of the MRE technique in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.