Melano-macrophage centres, also known as macrophage aggregates, are distinctive groupings of pigment-containing cells within the tissues of heterothermic vertebrates. In fish they are normally located in the stroma of the haemopoietic tissue of the spleen and the kidney, although in amphibians and reptiles, and some fish, they are also found in the liver. They may also develop in association with chronic inflammatory lesions elsewhere in the body and during ovarian atresia. In higher teleosts, they often exist as complex discrete centres, containing lymphocytes and macrophages, and may be primitive analogues of the germinal centres of lymph nodes. Melano-macrophage centres usually contain a variety of pigments, including melanins, and these increase in range and volume in older fish or in the presence of cachectic disease. Melano-macrophage centres act as focal depositories for resistant intracellular bacteria, from which chronic infections may develop. Iron capture and storage in haemolytic diseases appears to be a primary function, but antigen trapping and presentation to lymphocytes, sequestration of products of cellular degradation and potentially toxic tissue materials, such as melanins, free radicals and catabolic breakdown products are among other functions that have been ascribed. Recent work suggests that they are a site of primary melanogenesis rather than mere storage. Melano-macrophage centres increase in size or frequency in conditions of environmental stress and have been suggested as reliable biomarkers for water quality in terms of both deoxygenation and iatragenic chemical pollution.
Heat shock proteins (HSPs), also known as stress proteins and extrinsic chaperones, are a suite of highly conserved proteins of varying molecular weight (c. 16-100 kDa) produced in all cellular organisms when they are exposed to stress. They develop following up-regulation of specific genes, whose transcription is mediated by the interaction of heat shock factors with heat shock elements in gene promoter regions. HSPs function as helper molecules or chaperones for all protein and lipid metabolic activities of the cell, and it is now recognized that the up-regulation in response to stress is universal to all cells and not restricted to heat stress. Thus, other stressors such as anoxia, ischaemia, toxins, protein degradation, hypoxia, acidosis and microbial damage will also lead to their up-regulation. They play a fundamental role in the regulation of normal protein synthesis within the cell. HSP families, such as HSP90 and HSP70, are critical to the folding and assembly of other cellular proteins and are also involved in regulation of kinetic partitioning between folding, translocation and aggregation within the cell. HSPs also have a wider role in relation to the function of the immune system, apoptosis and various facets of the inflammatory process. In aquatic animals, they have been shown to play an important role in health, in relation to the host response to environmental pollutants, to food toxins and in particular in the development of inflammation and the specific and non-specific immune responses to bacterial and viral infections in both finfish and shrimp. With the recent development of non-traumatic methods for enhancing HSP levels in fish and shrimp populations via heat, via provision of exogenous HSPs or by oral or water administration of HSP stimulants, they have also, in addition to the health effects, been demonstrated to be valuable in contributing to reducing trauma and physical stress in relation to husbandry events such as transportation and vaccination.
The spleen, kidney and liver melano-macrophage centres of 14 species of clinically normal teleost fish were examined histochemically for ferric iron. Iron was present in varying amounts within the splenic centres of most specimens, but by contrast it was rarely found in the centres of the kidney and the liver.Under conditions of starvation and in diseased fish, a markedly increased deposition of ferric iron occurred in. the splenic centres of nearly all fish examined. By comparison, the iron content in the kidney and liver centres was generally still very low. These results suggest that there exist important functional differences between the pigment centres of different haemopoietic tissues of teleosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.