a b s t r a c tThe flapping motions of an inverted flag in a uniform flow were simulated using the immersed boundary method. The strain energy of the inverted flag was used as an indicator of the energy harvesting system efficiency. The flapping dynamics of and vortical structures around the inverted flag were examined in terms of the bending rigidity (γ) and the Reynolds number (Re). Three flapping motion modes were observed: a deflected mode, a flapping mode, and a straight mode. A mode intermediate between the flapping mode and the straight mode was identified, the biased mode. The vortical structures in the wake were characterized by three modes: a vortex pair; a vortex pair with a single vortex, and two vortex pairs, during half of the flapping period. The maximum mean strain energy ðE S Þ was obtained when the vortical structures behind the inverted flag formed a vortex pair during the flapping mode.
A fish may gain hydrodynamic benefits from being a member of a school. Inspired by fish schools, a two-dimensional simulation was performed for flexible fins propelled in tandem, diagonal, triangular and diamond configurations. The flow-mediated interactions between the flexible fins were analysed by using an immersed boundary method. A transverse heaving motion was prescribed on the leading edge of each fin, and other posterior parts passively adapted to the surrounding fluid as a result of the fluid–flexible-body interaction. The flexible fins were allowed to actively adjust their relative positions in the horizontal direction. The four basic stable configurations are spontaneously formed and self-sustained purely by the vortex–vortex and vortex–body interactions. The hydrodynamic benefits depend greatly on the local positions of the members. For the same heaving motion prescribed on the leading edge, the input power of the following fin in the stable tandem and diagonal configurations is lower by 14 % and 6 %, respectively, than that of the leading fin. The following fin in the diagonal formation can keep pace with the leading fin even for reduced heaving amplitudes because of the help of the leader via their shared fluid environment, where its required input power is reduced by 21 %. The heaving amplitudes of the trailing fins are reduced to optimize the propulsive efficiency, and the average efficiencies in the triangular and diamond configurations increase by up to 14 % and 19 %, respectively, over that of the isolated swimmer. The propulsive efficiencies are enhanced by 22 % for the fins in the second row and by 36 % for the fin in the third row by decreasing the heaving amplitude in the diamond formation.
Many animals in nature experience hydrodynamic benefits by swimming near the ground. Inspired by near-ground swimmers, a flexible fin flapping near the ground was modeled in a two-dimensional Cartesian coordinate system. The transverse heaving motion was prescribed at the leading edge and the posterior part of the fin fluttered passively under the fin–fluid interaction. The fin freely moved horizontally in a quiescent flow, which dynamically determined the swimming speed. The fluid–flexible fin interaction was considered by using an immersed boundary method. The fin could swim up to 14% faster near the ground than in the bulk fluid, and the vortices in the wake moved away from the ground. The body kinematics was passively altered by flapping near the ground, and the trailing edge amplitude decreased as the ground proximity increased. The benefits or penalties in the thrust and the power input by swimming near the ground were not only the direct results of the hydrodynamic changes, but also the indirect results of the altered body kinematics. The thrust was enhanced by approximately 37% and the power input increased by about 17% at the ground proximity of 1.5, which were the pure results of the hydrodynamic changes near the ground. The flexible fin could generate more thrust near the ground with a smaller penalty in the power input, leading to the enhancement of the Froude propulsive efficiency by about 17%.
The growing demand for electrical energy and the impact of global warming leads to a paradigm shift in the power sector. This has led to the increased usage of renewable energy sources. Due to the intermittent nature of the renewable sources of energy, devices capable of storing electrical energy are required to increase its reliability. The most common means of storing electrical energy is battery systems. Battery usage is increasing in the modern days, since all mobile systems such as electric vehicles, smart phones, laptops, etc., rely on the energy stored within the device to operate. The increased penetration rate of the battery system requires accurate modelling of charging profiles to optimise performance. This paper presents an extensive study of various battery models such as electrochemical models, mathematical models, circuit-oriented models and combined models for different types of batteries. It also discusses the advantages and drawbacks of these types of modelling. With AI emerging and accelerating all over the world, there is a scope for researchers to explore its application in multiple fields. Hence, this work discusses the application of several machine learning and meta heuristic algorithms for battery management systems. This work details the charging and discharging characteristics using the black box and grey box techniques for modelling the lithium-ion battery. The approaches, advantages and disadvantages of black box and grey box type battery modelling are analysed. In addition, analysis has been carried out for extracting parameters of a lithium-ion battery model using evolutionary algorithms.
The hydrodynamics of a swimming jellyfish depends on the morphology of the species. For example, oblate jellyfish appear to generate wide vortex structures near the bell margin. The vortex structures affect both the propulsion system and the feeding structure because the swimming and prey capturing activities are interrelated processes in these taxa. A three-dimensional computational model was established for an oblate jellyfish to analyse how the vortex structures present in the wake affect the swimming mechanism and the propulsion efficiency, which is defined as the ratio of power output (thrust multiplied by centre velocity) to power input (energy rate required for bell contraction). An improved penalty immersed boundary method was adopted to consider the interactions between the swimming jellyfish and the ambient fluid. The vortex structures in the wake of the swimming jellyfish were investigated in detail. The vortices generated by the contraction and expansion of the jellyfish bell interact with the vortex structures generated by the forward-moving behaviour of the jellyfish. The resulting vortex structures not only transfer momentum to the swimming jellyfish via the fluid, thereby providing the main source of thrust, but also have an implication for feeding. The effects of the elastic properties of the jellyfish on the propulsion were examined. The propulsion efficiency reaches its optimum value at particular elastic properties. We also investigated the effect of the swimming pattern of jellyfish on the propulsion efficiency. The efficiency increases with the flapping frequency and force duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.