Background Percutaneous transluminal coronary angioplasty (PTCA) balloon catheters must withstand high pressures required for the lesion treatment, pushing loads during insertion, and pulling loads during withdrawal. These loads pose a challenge especially for polymeric tubular shafts with small cross sections. In order to enable new design innovations and to better understand the mechanics of current catheter technologies, the tensile properties of polyamide (PA) 12 were investigated. PA 12 dog bone specimens and medical PA 12 tubes were either stored at ambient temperature and humidity or conditioned in water, and subjected to tensile loads at different temperatures. In addition, the effect on the tensile properties of the necking process, a forming process to reduce the wall thickness of the tubes, was determined. Results The tested tubes showed a reduction in both Young’s Modulus (− 41.5%) and yield stress (− 29.2%) compared to standardized specimens. Furthermore, an increase in temperature and water absorption softens the material and reduces the mechanical properties like the Young’s Modulus and the yield stress. It was found that the material strengthens during the necking process. Likely due to the orientation of the polymers chain molecules in load direction (Rösler et al., 2007), the Young’s Modulus of the material could be increased by 43.5%. Furthermore, the absence of a yield point after necking allows for a greater loading capacity of the material without unstable neck growth. Besides the strengthening, the ultimate strain is reduced by 50%. This indicates that the necking process induces plastic deformation. Conclusion The investigation showed that the environmental conditions like temperature and humidity can influence mechanical properties. It could also be shown that pre-forming processes such as necking can enhance the mechanical properties, such as the Young’s Modulus, while reducing the wall thickness. These findings suggest possible further development of catheters with a small cross section and higher mechanical strength and highlight the importance to account for the targeted operating temperature during the design process.
Finite-element (FE) simulations that go beyond the linear elastic limit of materials can aid the development of polymeric products such as stretch blow molded angioplasty balloons. The FE model requires the input of an appropriate elastoplastic material model. Up to the onset of necking, the identification of the hardening curve is well established. Subsequently, additional information such as the cross-section and the triaxial stress state inside the specimen is required. The present study aims to inversely identify the post-necking hardening behavior of the semi-crystalline polymer polyamide 12 (PA12) at different temperatures. Our approach uses structural FE simulations of a dog-bone tensile specimen in LS-DYNA with mesh sizes of 1 mm and 2 mm, respectively. The FE simulations are coupled with an optimization routine defined in LS-OPT to identify material properties matching the experimental behavior. A Von Mises yield criterion coupled with a user-defined hardening curve (HC) were considered. Up to the beginning of necking, the Hockett–Sherby hardening law achieved the best fit to the experimental HC. To fit the entire HC until fracture, an extension of the Hockett–Sherby law with power-law functions achieved an excellent fit. Comparing the simulation and the experiment, the following coefficient of determination R2 could be achieved: Group I: R2 > 0.9743; Group II: R2 > 0.9653; Group III: R2 > 0.9927. Using an inverse approach, we were able to determine the deformation behavior of PA12 under uniaxial tension for different temperatures and mathematically describe the HC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.