In experiment 1, eighty crossbred steers (239±15 kg) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg) with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets.
This study evaluated the effect of Candida norvegensis (C. norvegensis) viable yeast culture on in vitro ruminal fermentation of oat straw. Ruminal fluid was mixed with buffer solution (1:2) and anaerobically incubated with or without yeast at 39°C for 0, 4, 8, 16, and 24 h. A fully randomized design was used. There was a decrease in lactic acid (quadratic, p = 0.01), pH, (quadratic, p = 0.02), and yeasts counts (linear, p<0.01) across fermentation times. However, in vitro dry matter disappearance (IVDMD) and ammonia-N increased across fermentation times (quadratic; p<0.01 and p<0.02, respectively). Addition of yeast cells caused a decrease in pH values compared over all fermentation times (p<0.01), and lactic acid decreased at 12 h (p = 0.05). Meanwhile, yeast counts increased (p = 0.01) at 12 h. C. norvegensis increased ammonia-N at 4, 8, 12, and 24 h (p<0.01), and IVDMD of oat straw increased at 8, 12, and 24 h (p<0.01) of fermentation. Yeast cells increased acetate (p<0.01), propionate (p<0.03), and butyrate (p<0.03) at 8 h, while valeriate and isovaleriate increased at 8, 12, and 24 h (p<0.01). The yeast did not affect cellulolytic bacteria (p = 0.05), but cellulolytic fungi increased at 4 and 8 h (p<0.01), whereas production of methane decreased (p<0.01) at 8 h. It is concluded that addition of C. norvegensis to in vitro oat straw fermentation increased ruminal fermentation parameters as well as microbial growth with reduction of methane production. Additionally, yeast inoculum also improved IVDMD.
The effect of fermented apple pomace (FAP) on animal health, antioxidant activity (AA), hematic biometry (HBm) and the development of ruminal epithelium were investigated in a study with 24 finishing lambs (BW = 25.4 ± 3.3 Kg). Lambs were grouped by sex (12 male and 12 female) and fed (n = 6 per group of treatment) a basal fattening diet (Control diet, T1) or the basal diet supplemented to include 10.91% of fermented apple pomace (FAP diet, T2). The animals were kept 56 d in individual metabolic cages, with ad libitum access to water and feed. Two blood samples were collected from each animal on d 0, 28, and 56 to determine AA in plasma and hematic biometry (HBm). Four samples of ruminal tissue were taken postmortem to evaluate the development of ruminal epithelium based on the length (LP) and width (WP) of papillae. AA and HBm data were analyzed with a mixed model (fixed effects: diet, sampling, sex, and their interaction; using the experimental unit nested in the effect of the diet as the random effect). LP and WP were analyzed with a hierarchical model, as simple and nested effects in the sampling site, where the fixed effects were the diet and the sex of the animal and their interaction. There was an effect of diet on AA, which was higher (P < 0.06) in T2 vs. T1 at 56 d (24.34 vs. 21.79 mM Fe2). Leukocytes increased (P < 0.05) from 7.52*10(3) ± 1.29*10/(3)μL to 9.14*10(3) ± 1.24*10(3)/μL in all the animals in the experiment, with a marked increased (P < 0.05) at 28 d after beginning of the feeding period, with values within the normal range for this species and without effect of the diet (P > 0.05) for the other indicators of HBm. Males' LP was higher in T2 than in T1 (P < 0.05). It was concluded that the use of FAP in the diets of finishing sheep reaped benefits on animal health and the development of rumen epithelium by improving antioxidant activity in plasma and stimulating the growth of papillae.
The minimal effective dose of sodium chlorate as an intervention to reduce the carriage of pathogenic bacteria in food-producing animals has not been clearly established. The effect of low-level oral chlorate administration to ewes was assessed by comparing the diversity of prominent bacterial populations in their gastrointestinal tract. Twelve lactating crossed Pelibuey and Blackbelly-Dorper ewes (average body weight, 65 kg) were randomly assigned (four per treatment) to receive a control treatment (TC; consisting of 3 g of NaCl per animal per day) or one of two chlorate treatments (T3 or T9; consisting of 1.8 or 5.4 g of NaClO3 per animal per day, respectively). Treatments were administered twice daily via oral gavage for 5 days. Ruminal and fecal samples were collected daily, starting 3 days before and ending 6 days after treatment, and were subjected to denaturing gradient gel electrophoresis of the 16S rRNA gene sequence amplified from total population DNA. For ruminal microbes, percent similarity coefficients (SCs) between groups varied from 23.0 to 67.5% and from 39.4 to 43.3% during pretreatment and treatment periods, respectively. During the treatment period, SCs within groups ranged from 39.4 to 90.3%, 43.3 to 86.7%, and 67.5 to 92.4% for TC, T3, and T9, respectively. For fecal microbes, SCs between groups varied from 38.0 to 85.2% and 38.0 to 94.2% during pretreatment and treatment periods, respectively. SCs for fecal populations during treatment were most varied for TC (38.0 to 67.9%), intermediate for T9 (75.6 to 92.0%), and least varied for T3 (80.6 to 90.6%). Heterogeneity within and between groups provided no evidence of an effect of chlorate treatment on ruminal or fecal microbial populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.