Based on the interfacial-layer and quantum-mechanical (QM) carrier transport approach, a theoretical model is proposed to predict the anomalous behavior of low-temperature current-voltage (I-V) characteristics of Ti-silicided Schottky diodes. Physical parameters such as barrier height, ideality factor, series resistance, and effective Richardson constant of silicided Schottky diodes are extracted from the forward experimental I-V characteristics. Simulations of both the forward and reverse I-V characteristics have also been performed using extracted parameters. Results are compared with the models, such as, thermionic-emission-diffusion and thermionic-emission with barrier lowering reported in the literature. It is shown that for Ti-silicided Schottky diodes, the use of QM transport model provides a better agreement with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.