A rotational band with seven gamma-ray transitions between states with spin 2 Planck's constant and 16 Planck's constant has been observed in the doubly magic, self-conjugate nucleus (40)(20)Ca(20). The measured transition quadrupole moment of 1.80(+0.39)(-0.29)eb indicates a superdeformed shape with a deformation beta(2) = 0.59(+0.11)(-0.07). The features of this band are explained by cranked relativistic mean field calculations to arise from an 8-particle 8-hole excitation.
The observation of rotational band�, in different nuclei that have unexpectedly identical moments of inertia and, sometimes, identical y -ray energies has excited the low-energy nuclear physics community recently. These identical bands exist at both low and high spins, and they span a wide variety of shapes that range from weakly oblate, to normal, moderately large, and super-prolate deformations. The pervasive occurrences of identical bands point to the rigidity of the even-even nuclei with respect to the polarization forces of the unpaired valence nucleons.This unexpected stability has posed a serious challenge to theoretical models.
A superdeformed rotational band has been identified in 36Ar, linked to known low-spin states, and observed to its high-spin termination at Ipi = 16(+). Cranked Nilsson-Strutinsky and spherical shell model calculations assign the band to a configuration in which four pf-shell orbitals are occupied, leading to a low-spin deformation beta(2) approximately 0.45. Two major shells are active for both protons and neutrons, yet the valence space remains small enough to be confronted with the shell model. This band thus provides an ideal case to study the microscopic structure of collective rotational motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.