In this work, a new, easy and rapid method of analyzing phenolic compounds in pollen extract, based on capillary electrophoresis coupled with electrospray ionization time-of-flight-mass spectrometry (CE-ESI-TOF-MS), has been developed. A systematic investigation of separation parameters has been performed with respect to resolution, sensitivity, analysis time and peak shape. The electrophoretic parameters and electrospray conditions must be optimized to obtain reproducible analyses. Using this method, several important phenolic compounds such as acetin-glucoside, 7-O-methylherbacetin-3-sophoroside, galloyl-glucose, quercetin-3-sophoroside, apigenin-6,8-di-C-glycoside, quercetin-3-rutinoside, genistein-7-O-beta-D: -glucoside, luteolin-7-O-glucoside, apigenin-7-O-glucoside and 2',4',6'-trihydroxy-3'-formyldihydrochalcone have been determined directly from pollen extract. The efficiency, the rapidity, the small amounts of sample required, and the high resolution of CE coupled with the sensitivity, the selectivity, the accurate masses and the true isotopic patterns obtained using TOF-MS point to the potential of this approach for identifying the phenolic compounds present in pollen.
The applicability of nanoLC-ESI-TOF MS for the analysis of phenolic compounds in olive oil was studied and compared with a HPLC method. After the injection, the compounds were focused on a short capillary trapping column (100 microm id, effective length 20 mm, 5 microm particle size) and then nanoLC analysis was carried out in a fused silica capillary column (75 microm id, effective length 10 microm, 3 microm particle size) packed with C18 stationary phase. The mobile phase was a mixture of water + 0.5% acetic acid and ACN eluting at 300 nL/min in a gradient mode. Phenolic compounds from different families were identified and quantified. The quality parameters of the nanoLC method (linearity, LODs and LOQs, repeatability) were evaluated and compared with those obtained with HPLC. The new methodology presents better sensitivity (reaching LOD values below 1 ppb) with less consumption of mobile phases, but worse repeatability, especially inter-day repeatability, resulting in more difficulties to get highly accurate quantification. The results described in this article open up the application fields of this technique to cover a larger variety of compounds and its advantages will make it especially useful for the analysis of samples containing low concentration of phenolic compounds, as for instance, in biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.