The importance of wild birds as potential vectors of disease has received recent renewed empirical interest, especially regarding human health. Understanding the spread of bacterial pathogens in wild birds may serve as a useful model for examining the spread of other disease organisms, both amongst birds, and from birds to other taxa. Information regarding the normal gastrointestinal bacterial flora is limited for the majority of wild bird species, with the few well-studied examples concentrating on bacteria that are zoonotic and/or relate to avian species of commercial interest. However, most studies are limited by small sample sizes, the frequent absence of longitudinal data, and the constraints of using selective techniques to isolate specific pathogens. The pathogenic genera found in the gut are often those suspected to exist in the birds' habitat, and although correlations are made between bacterial pathogens in the avian gut and those found in their foraging grounds, little is known about the effect of the pathogen on the host, unless the causative organism is lethal. In this review, we provide an overview of the main bacterial pathogens isolated from birds (with particular emphasis on enteropathogenic bacteria) which have the potential to cause disease in both birds and humans, whilst drawing attention to the limitations of traditional detection methods and possible study biases. We consider factors likely to affect the susceptibility of birds to bacterial pathogens, including environmental exposure and heterogeneities within the host population, and present probable avenues of disease transmission amongst birds and from birds to other animal taxa. Our primary aim is to identify gaps in current knowledge and to propose areas for future study.
This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate
Several insect species show an increase in cuticular melanism in response to high densities. In some species, there is evidence that this melanism is correlated with an up‐regulation of certain immune system components, particularly phenoloxidase (PO) activity, and with the down‐regulation of lysozyme activity, suggesting a trade‐off between the two traits. As melanism has a genetic component, we selected both melanic and nonmelanic lines of the phase‐polyphenic lepidopteran, Spodoptera littoralis, in order to test for a causative genetic link between melanism, PO activity and lysozyme activity, and to establish if there are any life‐history costs associated with the melanic response. We found that, in fact, melanic lines had lower PO activity and higher lysozyme activity than nonmelanic lines, confirming a genetic trade‐off between the two immune responses, but also indicating a genetic trade‐off between melanism and PO activity. In addition, we found that lines with high PO activity had slower development rates suggesting that investment in PO, rather than in melanism, is costly.
. (2015) 'Dominant mechanisms for the delivery of ne sediment and phosphorus to uvial networks draining grassland dominated headwater catchments.', Science of the total environment., 523 . pp. 178-190. Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.