Thirty calves were randomly assigned to two treatments and fed until weaning [42 days (d) of age]. Treatments were a control group (n = 15), which did not receive Megasphaera elsdenii (Me0) and a M. elsdenii group, which received a 50-ml oral dose of M. elsdenii NCIMB 41125 (10(8) CFU/ml) at day 14 day of age (Me14). Calves were given colostrum for the first 3 day followed by limited whole milk feeding. A commercial calf starter was offered ad libitum starting at day 4 until the end of the study. Fresh water was available throughout the study. Feed intake and growth were measured. Blood samples were collected via jugular venipuncture to determine β-hydroxybutyrate (BHBA) concentrations. Fourteen male calves (seven per group) were euthanised on day 42 and digestive tracts harvested. Reticulo-rumen weight was determined and rumen tissue samples collected from the cranial and caudal sacs of the ventral and dorsal portions of the rumen for measurements of papillae length, papillae width and rumen wall thickness. Dosing with M. elsdenii NCIMB 41125 improved starter dry matter intake (DMI), weaning body weight (BW) and tended to improve average daily gain. Calves in Me14 group had greater plasma BHBA concentration than Me0-calves during the last 3 weeks of the trial and had at day 42 greater reticulo-rumen weight, papillae width and papillae density compared to Me0. No differences in rumen wall thickness or papillae length were observed between the two groups. Total volatile fatty acids, acetate and propionate production did not differ between treatments, but butyrate production was greater in Me14 than Me0. Dosing M. elsdenii NCIMB 41125 showed benefit for calves with improved feed intake and rumen development suggesting increased epithelium metabolism and improved absorption of digestive end products.
In-feed supplementation of elevated dietary copper has the potential to co-select for macrolide resistance. Further studies are warranted to investigate the factors involved in maintenance and dissemination of the resistance determinants and their co-selection mechanism in relation to feed-grade antimicrobials' usage in feedlot cattle.
The pool of antimicrobial resistance determinants in the environment and in the gut flora of cattle is a serious public health concern. In addition to being a source of human exposure, these bacteria can transfer antibiotic resistance determinants to pathogenic bacteria and endanger the future of antimicrobial therapy. The occurrence of antimicrobial resistance genes on mobile genetic elements, such as plasmids, facilitates spread of resistance. Recent work has shown in vitro anti-plasmid activity of menthol, a plant-based compound with the potential to be used as a feed additive to beneficially alter ruminal fermentation. The present study aimed to determine if menthol supplementation in diets of feedlot cattle decreases the prevalence of multidrug-resistant bacteria in feces. Menthol was included in diets of steers at 0.3% of diet dry matter. Fecal samples were collected weekly for 4 weeks and analyzed for total coliforms counts, antimicrobial susceptibilities, and the prevalence of tet genes in E. coli isolates. Results revealed no effect of menthol supplementation on total coliforms counts or prevalence of E. coli resistant to amoxicillin, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, and sulfamethoxazole; however, 30 days of menthol addition to steer diets increased the prevalence of tetracycline-resistant E. coli (P < 0.02). Although the mechanism by which menthol exerts its effects remains unclear, results of our study suggest that menthol may have an impact on antimicrobial resistance in gut bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.