Abstract. The use of organic soils by agriculture involves drainage and tillage, and the resulting increase in C and N turnover can significantly affect their greenhouse gas balance. This study estimated annual fluxes of CH 4 and N 2 O, and ecosystem respiration (R eco ), from eight organic soils managed by agriculture. The sites were located in three regions representing different landscape types and climatic conditions, and three land use categories were covered (arable crops, AR, grass in rotation, RG, and permanent grass, PG). The normal management at each site was followed, except that no N inputs occurred during the monitoring period from August 2008 to October 2009. The stratified sampling strategy further included six sampling points in three blocks at each site. Environmental variables (precipitation, PAR, air and soil temperature, soil moisture, groundwater level) were monitored continuously and during sampling campaigns, where also groundwater samples were taken for analysis. Gaseous fluxes were monitored on a three-weekly basis, giving 51, 49 and 38 field campaigns for land use categories AR, PG and RG, respectively. Climatic conditions in each region during monitoring were representative as compared to 20-yr averages. Peat layers were shallow, typically 0.5 to 1 m, and with a pH of 4 to 5. At six sites annual emissions of N 2 O were in the range 3 to 24 kg N 2 O-N ha −1 , but at two arable sites (spring barley, potato) net emissions of 38 and 61 kg N 2 O-N ha −1 were recorded. The two highemitting sites were characterized by fluctuating groundwater, low soil pH and elevated groundwater SO 2− 4 concentrations. Annual fluxes of CH 4 were generally small, as expected, ranging from 2 to 4 kg CH 4 ha −1 . However, two permanent grasslands had tussocks of Juncus effusus L. (soft rush) in sampling points that were consistent sources of CH 4 throughout the year. Emission factors for organic soils in rotation and with permanent grass, respectively, were estimated to be 0.011 and 0.47 g m −2 for CH 4 , and 2.5 and 0.5 g m −2 for N 2 O. This first documentation of CH 4 and N 2 O emissions from managed organic soils in Denmark confirms the levels and wide ranges of emissions previously reported for the Nordic countries. However, the stratified experimental design also identified links between gaseous emissions and site-specific conditions with respect to soil, groundwater and vegetation which point to areas of future research that may account for part of the variability and hence lead to improved emission factors or models.
Denitrification as a sink of dissolved nitrous oxide (N2O) was investigated in a freshwater riparian fen. In a 15‐m transect extending from the hillslope and into the fen the groundwater concentrations of nitrate (NO−3) declined from 1.8 mM NO−3 (25 mg L−1) to less than 0.01 mM NO−3, dissolved oxygen (O2) and nitrous oxide (N2O) declined from approximately 110 µM O2 (3.5 mg O2 L−1) and 4.0 µM N2O‐N (56 µg N L−1), respectively, to zero and the dissolved N2 concentration increased by 589 µM N2‐N (8.2 mg N L−1). The NO−3 reduction was 0.42 µM cm−3 d−1 or 7.71 µM cm−2 d−1 in sediment columns with continuous upward groundwater flow through the sediment. Concomitant with NO−3 reduction, N2O was produced at a rate of 54.4 nM N2O‐N cm−2 d−1 in this same 18‐cm narrow sediment zone. However, the N2O produced was subsequently reduced at the same rate closer to the sediment surface. In 15NO−3 experiments on chloramphenicol‐treated anaerobic sediment slurries, the denitrifying enzyme activity (DEA) was estimated to be 118 ± 16.7 nmol N (N2‐N + N2O‐N) g fresh weight 1−1 d−1, of which 36% accumulated as N2O. Thus, in this permanently water‐covered riparian fen, denitrification served as a sink for both the dissolved N2O in groundwater recharging the fen and the N2O produced within the riparian sediment.
During the last 15-20 years, re-establishment of freshwater riparian wetlands and remeandering of streams and rivers have been used as a tool to mitigate nutrient load in downstream recipients in Denmark. The results obtained on monitoring four different streams and wetland restoration projects are compared with respect to hydrology, i.e. flow pattern and discharge of ground or surface water, retention of phosphorus (P), and removal of nitrogen (N). Furthermore, the monitoring strategies applied for quantifying the post-restoration nutrient retention are evaluated. The four wetland restoration projects are the Brede River restoration (including river valley groundwater flow, remeandering and inundation), Lyngbygaards River restoration (groundwater flow, irrigation with drainage water, inundation with river water and remeandering), Egeskov fen (fen re-establishment and stream remeandering) and Egebjerg Meadows (fen restoration and hydrological reconnection to Store Hansted River). Retention of phosphorus varied between 0.13 and 10 kg P ha -1 year -1 , while the removal of nitrogen varied between 52 and 337 kg N ha -1 year -1 . The monitoring strategy chosen was not optimal at all sites and would have benefitted from a knowledge on local hydrology and water balances in the area to be restored before planning for the final monitoring design. Furthermore, the outcome concerning P retention would have benefitted from a more frequent sampling strategy.
The use of organic soils by agriculture involves drainage and tillage, and the resulting increase in C and N turnover can significantly affect their greenhouse gas balance. This study estimated annual fluxes of CH4 and N2O, and ecosystem respiration (Reco), from eight organic soils managed by agriculture. The sites were located in three regions representing different landscape types and climatic conditions, and three land use categories (arable crops, AR, grass in rotation, RG, and permanent grass, PG) were covered. The normal management at each site was followed, except that no N inputs occurred during the monitoring period from August 2008 to October 2009. The stratified sampling strategy further included six sampling points in three blocks at each site. Environmental variables (precipitation, PAR, air and soil temperature, soil moisture, groundwater level) were monitored continuously and during sampling campaigns, where also groundwater samples were taken for analysis. Gaseous fluxes were monitored on a three-weekly basis, giving 51, 49 and 38 field campaigns for land use categories AR, PG and RG, respectively. Climatic conditions in each region during monitoring were representative based on 20-yr averages. Peat layers were shallow, typically 0.5 to 1 m, and with a pH of 4–5. At six sites annual emissions of N2O were in the range 3 to 24 kg N2O-N ha−1, but at two arable sites (spring barley, potato) net emissions of 38 and 61 kg N2O-N ha−1 were recorded. Both were characterized by fluctuating groundwater with elevated SO42− concentrations. Annual fluxes of CH4 were generally small, as expected, ranging from –2 to 4 kg CH4 ha−1. However, two permanent grasslands had tussocks of Juncus effusus (soft rush) in sampling points that were consistent sources of CH4 throughout the year. Emission factors for organic soils in rotation and permanent grass, respectively, were estimated to be 0.011 and 0.47 g m−2 for CH4, and 2.5 and 0.5 g m−2 for N2O. This first documentation of CH4 and N2O emissions from managed organic soils in Denmark confirms the levels and wide ranges of emissions previously reported for this region. However, the factorial approach also identified links between gaseous emissions and site-specific conditions with respect to soil, groundwater and vegetation which point to areas of future research that may account for part of the variability and hence lead to improved emission factors or models
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.