[1] Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor-phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert (Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids (alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1-70 parts-per-billion. Subcritical water extraction efficiency was examined over the temperature range of 30-325°C, at pressures of 17.2 or 20.0 MPa, and for water-sample contact equilibration times of 0-30 min. None of the amino acids were extracted in detectable amounts at 30°C (at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150°C and 250°C (at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325°C (at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200°C, 17.2 MPa, and a water-sample contact equilibration time of 10 min.
It has been suggested that spectroscopic analysis of the aqueous humor of the eye could be used to indirectly predict blood glucose levels in diabetics noninvasively. We have been investigating this potential using Raman spectroscopy in combination with partial least squares (PLS) analysis. We have determined that glucose at clinically relevant concentrations can be accurately predicted in human aqueous humor in vitro using a PLS model based on artificial aqueous humor. We have further determined that with proper instrument design, the light energy necessary to achieve clinically acceptable prediction of glucose does not damage the retinas of rabbits and can be delivered at powers below internationally acceptable safety limits. Herein we summarize our current results and address our strategies to improve instrument design.
Glucose concentrations of in vitro human aqueous humor (HAH) samples from cataract patients were determined using 785 nm Raman spectra and partial least squares (PLS) calibration. PLS models were created from spectra of prepared calibration solutions rather than aqueous humor samples. Spectra were obtained with an excitation energy (100 mW for 150 s), which was higher than can be applied in vivo, to decrease the models' contribution to prediction uncertainty. The solutions contained experimentally designed levels of glucose, bicarbonate, lactate, urea, and ascorbate. Multiplicative signal correction of spectra helped compensate for the +/-20% drift in laser power observed at the sample over six noncontiguous days of data collection. Seventeen HAH samples containing 38-775 mg/dL of glucose exhibited a root-mean-square error (RMSEP) of 22 mg/dL, coefficient of determination (r(2)) of 0.989, and bias of 6 mg/dL when predicted from lower energy (30 s) spectra collected contemporaneously with fifty calibration spectra. Similar results were obtained even when spectral data were gathered separately for human aqueous humor samples and calibration samples: 10 HAH samples, calibrated on 25 solutions measured 3.6 weeks earlier, exhibited an RMSEP of 23 mg/dL, r(2) of 0.992, and bias of 9 mg/dL. The results demonstrate progress toward the determination of glucose levels in patient-derived aqueous humor using laboratory-derived "artificial aqueous humor" calibration solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.