Summary
Reasons for performing study: Light microscopical studies show that the key lesion of laminitis is separation at the hoof lamellar dermal‐epidermal interface. More precise knowledge of the damage occurring in the lamellar basement membrane zone may result if laminitis affected tissue is examined with the transmission electron microscope. This could lead to better understanding of the pathogenesis of lesions and the means of treatment or prevention.
Objectives: To investigate the ultrastructure of acute laminitis as disease of greater severity is induced by increasing oligofructose (OF) dosage.
Methods: Three pairs of normal horses, dosed with OF at 7.5, 10 and 12.5 g/kg bwt via nasogastric intubation, developed laminitis 48 h later. Following euthanasia, their forefeet were processed for transmission electron microscopy. Lamellar basal cell hemidesmosome (HD) numbers and the distance between the basal cell plasmalemma and the lamina densa of the basement membrane were estimated and compared to control tissue.
Results: Increasing OF dosage caused greater HD loss and more severe laminitis. The characteristic separation of the basement membrane, cytoskeleton failure and rounded basal cell nuclei results from combined HD dysassembly and anchoring filament failure.
Conclusions: Without properly assembled HDs, dysadhesion between the lamina densa of the basement membrane (BM) and epidermal basal cells occurs, emphasising the fundamental importance of HDs in maintaining attachment at the lamellar interface. Medical conditions that trigger lamellar matrix metalloproteinase (MMP) activation and/or compromise entry of glucose into lamellar basal cells appear to promote loss and failure of HDs and, therefore, laminitis development.
Potential relevance: A correlation between lameness severity and escalating loss of lamellar HDs now exists. Therapy aimed at protecting the lamellar environment from haematogenous delivery of MMP activators or from glucose deprivation may control laminitis development.
Summary
The microcirculation of the dermal laminae and papillae of the equine foot from seven clinically normal Australian ponies was studied using an improved microvascular casting corrosion technique and scanning electron microscopy. Casts of veins, arteries, capillaries and arteriovenous anastomoses (AVAs) were readily identified by their characteristic surface morphology. Arteries entered the laminar circulation axially, between pairs of axial veins, and were connected to each other by smaller calibre interconnecting arteries. Short abaxial branches of the axial interconnecting arteries gave rise to tufts of predominantly, proximodistally orientated, capillaries arranged abaxially in rows. The laminar veins anastomosed with each other extensively (the axial venous plexus) and formed most of the vascular skeleton of casts of the dermal laminae. AVAs were found throughout the laminar circulation but the largest and longest (40μ diameter) were found clustered close to the origin of the axial arteries. The density of the laminar AVAs was estimated to be 500 AVAs/cm2. Blood vessels of the dermal papillae of the periople, coronary band, distal laminae, sole and frog shared a basic structural organisation. The cast of each papillary unit consisted of a central artery and vein enmeshed in a sheath of fine capillaries. At intervals along the length of the central artery were short branches which gave rise to tufts of capillaries. The capillaries formed a tortuous anastomosing plexus which encircled the papillary unit and drained into the central vein at intervals along its length. AVAs were always present at the base of the papillary units and anastomoses connected the central artery and vein. AVAs are important components of the dermal microcirculation of the equine foot and their distribution and density is compatible with their proposed role in the pathophysiology of equine laminitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.