An otherwise random, self-assembly of Ge quantum dots (QDs) on Si has been controlled by nano-patterning and oxidation to produce QDs with desired sizes, locations, and depths of penetration into the Si substrate. A heterostructure consisting of a thin amorphous interfacial oxide between the Ge QD and the Si substrate is shown to improve crystalline quality by de-coupling the lattice-matching constraint. A low dark current density of 1.1 lA/cm 2 and a high photocurrent enhancement up to 35 000 and 1500, respectively, for 1.5 mW incident illumination at 850 nm and 1160 nm was measured on our Ge QD-based metal-oxide-semiconductor photodiodes. V C 2012 American Institute of Physics. [http://dx.
We report a unique approach for the inclusion of size-tunable (7-50 nm), spherical Ge quantum dots (QDs) into gate stacks of metal-oxide-semiconductor (MOS) diodes, through selective oxidation of SiGe layers over the buffer layer of Si3N4 deposited over the Si substrate. In this complementary MOS (CMOS)-compatible approach, we successfully realized high performance nm scale Ge-QD MOS photodetectors with high figures of merit of low dark current density (1.5 × 10(-3) mA cm(-2)), superior photo-current-to-dark current ratio (13 500), high photoresponsivity (2.2 A W(-1)), and fast response time (5 ns), which are ready for direct integration with Si CMOS electronic circuits. Most importantly, the detection wavelength of the Ge QDs is tunable from near infrared to near ultraviolet by reducing the QD size from 50 to 7 nm as well as the optimal photoresponsivity is tailored by the Ge QD size and the effective thickness of gate dielectrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.