Although Al produces a solid metallurgical bonding with Mg alloy substrates, micropores or crevices in the Al coating can reduce the resistance of Mg alloy to corrosion. In this study, a composite coating with a defect-free microstructure was prepared on the AZ31 Mg alloy substrate by introducing Al 2 O 3 into the Al matrix via the method of laser cladding. On the one hand, Al 2 O 3 with thermal insulation had a low thermal expansion coefficient and was not very prone to voids during laser melting. On the other hand, Al 2 O 3 particles with a small size acted as the filler in the micropores or crevices. The Al/Al 2 O 3 coating exhibited a smaller current density (2.1 × 10 −6 A/cm 2 ) in comparison with those of bare substrate and Al coating (158.4 × 10 −6 and 3.1 × 10 −6 A/cm 2 , respectively), which was mainly ascribed to the pore-free microstructure and high resistance to corrosion of Al 2 O 3 phase. A favorable microhardness value of 95.3 HV was achieved for Al/Al 2 O 3 coating, approximately 1.8 times higher than that of Al coating (52.8 V), which was mainly ascribed to the dispersion hardening of Al 2 O 3 phase. Meanwhile, the Al/Al 2 O 3 coating significantly reduced wear volume from 2.8 mm 3 /m of Al coating to 0.4 mm 3 /m, showing great potential for weight reduction applications. K E Y W O R D S coating, corrosion, laser cladding, mechanical properties
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.