This paper presents the design and simulation results of a gigabit transceiver Application Specific Integrated Circuit (ASIC) called GBCR for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR has four upstream receiver channels and a downstream transmitter channel. Each upstream channel operates at 5.12 Gbps, while the downstream channel operates at 2.56 Gbps. In each upstream channel, GBCR equalizes a signal received through a 5meter 34-American Wire Gauge (AWG) twin-axial cable, retimes the data with a recovered clock, and drives an optical transmitter. In the downstream channel, GBCR receives the data from an optical receiver and drives the same type of cable as the upstream channels. The output jitter of an upstream channel is 26.5 ps and the jitter of the downstream channel after the cable is 33.5 ps. Each upstream channel consumes 78 mW and each downstream channel consumes 27 mW. Simulation results of the upstream test channel suggest that a significant jitter reduction could be achieved with minimally increased power consumption by using a Feed Forward Equalizer (FFE) + Decision Feedback Equalization (DFE) in addition to the linear equalization of the baseline channel. GBCR is designed in a 65-nm CMOS technology.
We present the characterization and quality control test of a gigabit cable receiver ASIC prototype, GBCR2, for the ATLAS Inner Tracker pixel detector upgrade. GBCR2 equalizes and retimes the uplink electrical signals from RD53B through a 6 m Twinax AWG34 cable to lpGBT. GBCR2 also pre-emphasizes downlink command signals through the same electrical connection from lpGBT to RD53B. GBCR2 has seven uplink channels each at 1.28 Gbps and two downlink channels each at 160 Mbps. The prototype is fabricated in a 65 nm CMOS process. The characterization of GBCR2 has been demonstrated that the total jitter of the output signal is 129.1 ps (peak-peak) in the non-retiming mode or 79.3 ps (peak-peak) in the retiming mode for the uplink channel and meets the requirements of lpGBT. The total power consumption of all uplink channels is 87.0 mW in the non-retiming mode and 101.4 mW in the retiming mode, below the specification of 174 mW. The two downlink channels consume less than 53 mW. A quality control test procedure is proposed and 169 prototype chips are tested. The yield is about 97.0%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.