We present a new image segmentation algorithm based on a tree-structured binary MRF model. The image is recursively segmented in smaller and smaller regions until a stopping condition, local to each region, is met. Each elementary binary segmentation is obtained as the solution of a MAP estimation problem, with the region prior modeled as an MRF. Since only binary fields are used, and thanks to the tree structure, the algorithm is quite fast, and allows one to address the cluster validation problem in a seamless way. In addition, all field parameters are estimated locally, allowing for some spatial adaptivity. To improve segmentation accuracy, a split-and-merge procedure is also developed and a spatially adaptive MRF model is used. Numerical experiments on multispectral images show that the proposed algorithm is much faster than a similar reference algorithm based on "flat" MRF models, and its performance, in terms of segmentation accuracy and map smoothness, is comparable or even superior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.