1. Electrical properties of four functional classes [inactivating bursting (ib), noninactivating bursting (nib), fast spiking (fsp), and regular spiking (rsp)] of neurons in the motor cortex of conscious cats were studied with the use of intracellular voltage recording and single-electrode voltage-clamp (SEVC) techniques. Evaluations were made of action potentials and afterpotentials, current-voltage (I-V) relationships, and passive cable properties. Values of membrane potential (Vm), input resistance (RN), membrane time constant (T0), and firing threshold (T50) were also measured. The data were used to extend the electrophysiological classifications of neurons described in the companion paper. 2. Average values of Vm (from -63 to -66 mV), action-potential amplitudes (from 72 to 77 mV), and firing threshold (-54 mV) were not statistically different in different types of neurons. However, the magnitude of intracellularly injected depolarizing current required to induce spike discharge at 50% probability varied significantly (from 0.6 to 1.1 nA) among cell types. The mean RN and T0 measured at Vm varied between 8.3 and 19.8 M omega, and 7.2 and 15.1 ms, respectively, in the cell classes. 3. Action potentials were overshooting. Their mean duration at half amplitude varied from 0.25 to 0.73 ms among different cell types. Three types of action-potential configurations were distinguished. Type I action potentials found in nib and rsp neurons were relatively fast and had a depolarizing afterpotential (DAP) as well as fast and slow after hyperpolarizations (fAHPs, sAHPs). Type II action potentials found in ib and rsp cells had relatively slow rise and decay phases, DAPs, and sAHPs. Their fAHPs were small or absent. Type III action potentials were found exclusively in fsp cells, had very short durations, prominent fAHPs, but no sAHPs. 4. Steady-state I-V relationships were determined by measuring voltage responses to 0.2- to 1.0-nA hyperpolarizing, rectangular current pulses at different membrane potentials. Both RN and T0 exhibited nonlinear behavior over wide ranges of membrane potential; however, between -65 and -75 mV, the I-V relationships varied little, and they appeared constant in most cells. The steady-state values of RN increased with decreasing, and decreased with increasing the membrane potential in all but fsp cells. The I-V relationships were virtually linear in fsp neurons. 5. Transient I-V relationships were studied by measuring voltage responses to depolarizing and hyperpolarizing, rectangular current pulses of increasing amplitude from a preset membrane potential of -70 mV.(ABSTRACT TRUNCATED AT 400 WORDS)
1. Patterns of firing activity and characteristics of antidromic and synaptic responses to stimulation of the pyramidal tract at peduncular level [peduncular pyramidal tract (PP)] and the ventrolateral thalamic nucleus (VL) were studied in neurons of area 4 gamma of the motor cortex of awake, chronic cats using intracellular microelectrode techniques. The results offer a new functional classification of neocortical neurons based on electrophysiological properties of the 640 recorded cells. 2. Four classes of neurons were distinguished: (class i) inactivating bursting (ib) neurons (n = 60) including fast antidromic response PP (fPP) (n = 0), slow antidromic response PP (sPP) (n = 11), and no antidromic response PP cells (nPP) (n = 49); (class ii) noninactivating bursting (nib) neurons (n = 79), including fPP (n = 23), sPP (n = 0), and nPP cells (n = 56); (class iii) fast-spiking (fsp) neurons (n = 56), including fPP (n = 0), sPP (n = 0), and nPP cells (n = 56); and (class iv) regular-spiking (rsp) neurons (n = 445), including fPP (n = 96), sPP (n = 38), and nPP cells (n = 311). (Neurons in each classification were further separated by their antidromic responses to PP stimulation: fast PP (fPP) slow PP (sPP), or nPP cells, the latter not responding antidromically to electrical stimulation of the peduncle.) 3. Recurrent monosynaptic excitatory postsynaptic potentials (EPSPs) followed antidromic spikes elicited by PP stimulation in most (96%) fPP but much fewer (24%) sPP cells. In fPP cells, it was possible to separate the PP EPSPs into two monosynaptic EPSP components that were generated by other fPP and sPP cells, respectively. VL stimulation evoked monosynaptic EPSPs in 100% of fPP cells (vs. 63% of sPP cells) and antidromic action potentials in 16% of fPP cells (vs. 12% of sPP cells). 4. Firing activity consisted of single spike discharges in most PP cells; however, noninactivating bursting was observed in 19% of fPP cells, and inactivating bursting was observed in 23% of sPP cells (see below). In 18% of ib and 11% of nib/nPP neurons, VL stimulation elicited antidromic action potentials. Other bursting neurons proved to be PP cells with characteristic differences in axonal conduction velocity (see above). All PP cells among the nib cells were fPP, and all PP cells among the ib cells were sPP cells. All fsp neurons were found to be nPP cells, and none could be activated antidromically by VL stimulation. Thus the fsp pattern of discharge distinguished a unique class of nPP cells.(ABSTRACT TRUNCATED AT 400 WORDS)
The properties of neuronal spike potentials ranging from 20 to 60 mV in size were studied in stable recordings made from the motor cortex of unanesthetized, unparalyzed cats. Histologic evidence that injection of horseradish peroxidase (HRP) was confined to single neurons and appropriately high levels of potassium measured with K+ ion-sensitive electrodes indicated that these recordings were obtained from single, intracellularly penetrated neurons. Pressure injection of small volumes of 4% HRP in 1 M KC1, intracellularly, was characteristically associated with transient increases in spike size and decreases in input resistance. Recoveries of HRP-filled dendritic processes without filling of somata were obtained from penetrations giving spikes smaller than the recorded resting potential (spike-undershoot recordings). Recordings with dendritic recoveries had higher input resistances and showed greater increases in spike size during pressure injection than did recordings with both somata and dendrites recovered. The activity in response to a weak click elicited in cells with spike potentials between 20 and 40 mV was as great or greater than that elicited in cells with larger spike potentials or in extracellularly recorded units. We conclude that many stable spike-undershoot recordings of neurons of the motor cortex of awake cats reflect penetrations of dendritic processes as opposed to injury because they show a) a normal functional response to weak auditory stimuli delivered over periods of many minutes, b) a reversible increase in spike size during pressure injection of small volumes of HRP in KC1 consistent with penetration of a cable remote from the site of spike generation, and c) the frequent recovery of HRP-marked dendrites without somata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.