The influence of Hf-based dielectrics on the underlying SiO2 interfacial layer (IL) in high-k gate stacks is investigated. An increase in the IL dielectric constant, which correlates to an increase of the positive fixed charge density in the IL, is found to depend on the starting, pre-high-k deposition thickness of the IL. Electron energy-loss spectroscopy and electron spin resonance spectra exhibit signatures of the high-k-induced oxygen deficiency in the IL consistent with the electrical data. It is concluded that high temperature processing generates oxygen vacancies in the IL responsible for the observed trend in transistor performance.
An interface dipole model explaining threshold voltage (Vt) tuning in HfSiON gated n-channel field effect transistors (nFETs) is proposed. Vt tuning depends on rare earth (RE) type and diffusion in Si∕SiOx∕HfSiON∕REOx/metal gated nFETs as follows: Sr<Er<Sc+Er<La<Sc<none. This Vt ordering is very similar to the trends in dopant electronegativity (EN) (dipole charge transfer) and ionic radius (r) (dipole separation) expected for a interfacial dipole mechanism. The resulting Vt dependence on RE dopant allows distinction between a dipole model (dependent on EN and r) and an oxygen vacancy model (dependent on valence).
Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.
We apply a systematic approach to identify a highk/metal gate stack degradation mechanism. Our results demonstrate that the SiO 2 interfacial layer controls the overall degradation and breakdown of the high-k gate stacks stressed in inversion. Defects contributing to the gate stack degradation are associated with the high-k/metal-induced oxygen vacancies in the interfacial layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.