Esophageal cancer is currently the fastest growing cancer in the United States. To help combat the recent rise in morbidity, our laboratory has developed a low-cost tethered capsule endoscope system (TCE) aimed at improving early detection of esophageal cancer. The TCE contains a resonant fiberoptic laser scanner (1.6 mm O.D.) which fits into 6.4-mm easy-to-swallow capsule at the distal tip. The tethered portion contains a single mode optical fiber multiplexed to three laser diodes at the proximal end. This design offers two main advantages over current endoscope technology. First, because of its small size, the TCE can be swallowed with minimal patient discomfort, thereby obviating sedation. Second, by imaging via directed laser light, the TCE is strategically positioned to employ several burgeoning laser-based diagnostic technologies, such as narrow-band, hyperspectral, and fluorescence imaging. It is believed that the combination of such imaging techniques with novel biomarkers of dysplasia will greatly assist in identifying precancerous conditions such as Barrett's esophagus (BE). As the probe is swallowed, the fiber scanner captures high resolution, wide-field color images of the gastroesophageal junction (500 lines at 0.05-mm resolution) currently at 15-Hz frame rate. Video images are recorded as the capsule is slowly retracted by its tether. Accompanying software generates panoramic images from the video output by mosaicing individual frames to aid in pattern recognition. This initial report describes the rationale for the unique TCE system design, results from preliminary testing in vitro and in vivo, and discussion on the merits of this new platform technology as a basis for developing a low-cost screening program for esophageal cancer.
As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.