A 28-d experiment was conducted using 126 crossbred barrows to evaluate the addition of a genetically engineered Escherichia coli phytase to diets that were 0.15% deficient in available P. Growth performance, bone strength, ash weight, and the apparent absorption of P, Ca, Mg, N, energy, DM, Zn, Fe, and Cu were the response criteria. The pigs (2 pigs/pen) averaged 7.61 kg of BW and 30 d of age initially. The low-P basal diet was supplemented with 0, 100, 500, 2,500, or 12,500 units (U) of E. coli phytase/kg of diet, or 500 U of Peniophora lycii phytase/kg of diet. The positive control (PC) diet was adequate in available P. Pigs were fed the diets in meal form. Fecal samples were collected from each pig from d 22 to 27 of the experiment. There were linear and quadratic increases (P < 0.001) in 28-d growth performance (ADFI, ADG, and G:F), bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg (P < or = 0.01 for quadratic) with increasing concentrations of E. coli phytase. Pigs fed the low-P diets containing 2,500 or 12,500 U/kg of E. coli phytase had greater (P < or = 0.01 or P < 0.001, respectively) values for growth performance, bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg than pigs fed the PC diet. The addition of E. coli phytase did not increase the apparent percentage absorption of N, GE, DM, Zn, Fe, or Cu. There were no differences in the efficacy of the E. coli or P. lycii phytase enzymes at 500 U/kg of low-P diet for any criterion measured. In conclusion, there were linear increases in growth performance, bone breaking strength and ash weight, and the apparent absorption of P, Ca, and Mg with increasing addition of E. coli phytase up to 12,500 U/kg of diet. Also, all of these criteria were greater for pigs fed the low-P diets containing 2,500 or 12,500 U of E. coli phytase/kg than for pigs fed the PC diet. The addition of 500, 2,500, or 12,500 U of E. coli phytase/kg of low-P diet reduced P excretion (g/d) in manure by 35, 42, and 61%, respectively, compared with pigs fed the PC diet.
A lipid-encapsulated perfluorocarbon nanoparticle molecular imaging contrast agent that utilizes a paramagnetic chemical exchange saturation transfer (PARACEST) chelate is presented. PARACEST agents are ideally suited for molecular imaging applications because one can switch the contrast on and off at will simply by adjusting the pulse sequence parameters. This obviates the need for pre-and postinjection images to define contrast agent binding. Spectroscopy (4.7T) of PARACEST nanoparticles revealed a bound water peak at 52 ppm, in agreement with results from the water-soluble chelate. Imaging of control nanoparticles showed no appreciable contrast, while PARA-CEST nanoparticles produced >10% signal enhancement. PARACEST nanoparticles were targeted to clots via antifibrin antibodies and produced a contrast-to-noise ratio ( Myocardial disease and stroke continue to be the nation's leading killer and are responsible for nearly 1 million American deaths (42%) annually. Approximately 160,000 of these losses involve individuals between the ages of 35 and 64 years (1) for whom the current early-diagnosis techniques have little effectiveness. New early-detection strategies are needed to prevent a patient's first symptomatic presentation from being the last. Although a variety of invasive approaches can be used to characterize atherosclerotic plaques and follow their changes serially (2), these techniques are primarily confined to research studies due to the increased risk, cost, and time required.We previously proposed that early recognition and quantification of microthrombi in ruptured plaques could provide an important biomarker to justify and guide aggressive therapeutic strategies to impede disease progression (3). We also reported the use of a lipid-encapsulated, perfluorocarbon nanoparticle system for molecular MRI of fibrin, an abundant component of thrombus. This agent affords specific detection of fibrin deposits using paramagnetic gadolinium chelates on the surface (4,5). The highly amplified paramagnetic signal provides a robust way to image targeted nanoparticles; however, routine use requires the collection of pre-and postinjection images to determine signal changes.Chemical exchange saturation transfer (CEST) agents have exchangeable protons (-NH, -OH, etc.) that resonate at a chemical shift that is distinguishable from the bulk water signal. RF prepulses applied at the appropriate frequency and power level can saturate the exchangeable protons, which transfer into the bulk water pool and lead to reduced equilibrium magnetization (6). Therefore, with the use of CEST agents one can switch the image contrast "on" and "off" by simply changing the pulse sequence parameters-an ability that is unique in the realm of MRI. This can minimize the time delays and motion-induced artifacts inherent in normal pre-and postcontrast imaging protocols. Although several agents contain exchangeable protons and can produce CEST contrast (7), the chemical shifts are often very close to the bulk water signal, which makes it dif...
Fifty weanling crossbred pigs averaging 6.2 kg of initial BW and 21 d of age were used in a 5-wk experiment to evaluate lower dietary concentrations of an organic source of Zn as a Zn-polysaccharide (Zn-PS) compared with 2,000 ppm of inorganic Zn as ZnO, with growth performance, plasma concentrations of Zn and Cu, and Zn and Cu balance as the criteria. The pigs were fed individually in metabolism crates, and Zn and Cu balance were measured on individual pigs (10 replications per treatment) from d 22 to 26. The basal Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35) diets contained 125 or 100 ppm added Zn as Zn sulfate, respectively, and met all nutrient requirements. Treatments were the basal Phase 1 and 2 diets supplemented with 0, 150, 300, or 450 ppm of Zn as Zn-PS or 2,000 ppm Zn as ZnO. Blood samples were collected from all pigs on d 7, 14, and 28. For pigs fed increasing Zn as Zn-PS, there were no linear or quadratic responses (P > or = 0.16) in ADG, ADFI, or G:F for Phases 1 or 2 or overall. For single degree of freedom treatment comparisons, Phase 1 ADG and G:F were greater (P < or = 0.05) for pigs fed 2,000 ppm Zn as ZnO than for pigs fed the control diet or the diet containing 150 ppm Zn as Zn-PS. For Phase 2 and overall, ADG and G:F for pigs fed the diets containing 300 or 450 ppm of Zn as Zn-PS did not differ (P > or = 0.29) from pigs fed the diet containing ZnO. Pigs fed the diet containing ZnO also had a greater Phase 2 (P < or = 0.10) and overall (P < or = 0.05) ADG and G:F than pigs fed the control diet. There were no differences (P > or = 0.46) in ADFI for any planned comparison. There were linear increases (P < 0.001) in the Zn excreted (mg/d) with increasing dietary Zn-PS. Pigs fed the diet containing ZnO absorbed, retained, and excreted more Zn (P < 0.001) than pigs fed the control diet or any of the diets containing Zn-PS. In conclusion, Phase 2 and overall growth performance by pigs fed diets containing 300 or 450 ppm Zn as Zn-PS did not differ from that of pigs fed 2,000 ppm Zn as ZnO; however, feeding 300 ppm Zn as Zn-PS decreased Zn excretion by 76% compared with feeding 2,000 ppm Zn as ZnO.
Carbohydrate is a preferred macronutrient of rats during the early dark phase and associated with an increase in norepinephrine (NE) and neuropeptide Y (NPY) in the paraventricular nucleus (PVN). Macronutrient choice is altered during zinc deficiency (ZD). The relationship between NE activity in the PVN and macronutrient choice during early dark was evaluated in rats fed zinc adequate (ZA) or ZD diet for 14 days. Total caloric intake was similar for ZA and ZD groups (-20 kJ) but ZA rats selected 63 +/- 5% of calories as carbohydrate while ZD rats selected 53 +/- 5% of their calories from protein (p < 0.01). Pair-fed (PF) rats selected 62 +/- 5% of calories as carbohydrate. Noradrenergic activity was lower (p < 0.01) in ZD and PF compared to ZA. The association between increased NE in the PVN at dark onset and selection of carbohydrate is not supported by the present results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.