We obtain the large deviation functional of a density profile for the asymmetric exclusion process of L sites with open boundary conditions when the asymmetry scales like 1 L . We recover as limiting cases the expressions derived recently for the symmetric (SSEP) and the asymmetric (ASEP) cases. In the ASEP limit, the non linear differential equation one needs to solve can be analysed by a method which resembles the WKB method.
We consider the totally asymmetric exclusion process (TASEP) in one dimension in its maximal current phase. We show, by an exact calculation, that the non-Gaussian part of the fluctuations of density can be described in terms of the statistical properties of a Brownian excursion. Numerical simulations indicate that the description in terms of a Brownian excursion remains valid for more general one dimensional driven systems in their maximal current phase.
We give numerical evidence that the location of the first order phase transition between the low and the high density phases of the one dimensional asymmetric simple exclusion process with open boundaries becomes sample dependent when quenched disorder is introduced for the hopping rates.Key words: phase transition, asymmetric simple exclusion process, disordered systems, open system, stationary non-equilibrium state 1 email: enaud@lps.ens.fr and derrida@lps.ens.fr 1
We investigate the fluctuations around the average density profile in the weakly asymmetric exclusion process with open boundaries in the steady state. We show that these fluctuations are given, in the macroscopic limit, by a centered Gaussian field and we compute explicitly its covariance function. We use two approaches. The first method is dynamical and based on fluctuations around the hydrodynamic limit. We prove that the density fluctuations evolve macroscopically according to an autonomous stochastic equation, and we search for the stationary distribution of this evolution. The second approach, which is based on a representation of the steady state as a sum over paths, allows one to write the density fluctuations in the steady state as a sum over two independent processes, one of which is the derivative of a Brownian motion, the other one being related to a random path in a potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.