It is well known that a system weakly coupled to a heat bath is described by the canonical ensemble when the composite S + B is described by the microcanonical ensemble corresponding to a suitable energy shell. This is true for both classical distributions on the phase space and quantum density matrices. Here we show that a much stronger statement holds for quantum systems. Even if the state of the composite corresponds to a single wave function rather than a mixture, the reduced density matrix of the system is canonical, for the overwhelming majority of wave functions in the subspace corresponding to the energy interval encompassed by the microcanonical ensemble. This clarifies, expands, and justifies remarks made by Schrödinger in 1952.
An equilibrium theory of rigid sphere fluids is developed based on the properties of a new distribution function G(r) which measures the density of rigid sphere molecules in contact with a rigid sphere solute of arbitrary size. A number of exact relations which describe rather fully the functional form of G(r) are derived. These are based on both geometrical considerations and the virial theorem. A knowledge of G(a) where a is the diameter of a rigid sphere enables one to arrive at the equation of state. The resulting analytical expression which is exact up to the third virial coefficient gives the fourth virial coefficient within 3% and the fifth, insofar as it is known, within 5%. Furthermore over the entire range of fluid density, the equation of state derived from theory agrees with that computed using machine methods. Theory also gives an expression for the surface tension of a hard sphere fluid in contact with a perfectly repelling wall. The dependence of surface tension on curvature is also given. The expressions obtained correlate nicely with those adduced by other thermodynamic and statistical mechanical theories. They also suggest that macroscopic consideration on surface tension can sometimes be successfully extrapolated to molecular dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.