It is well known that a system weakly coupled to a heat bath is described by the canonical ensemble when the composite S + B is described by the microcanonical ensemble corresponding to a suitable energy shell. This is true for both classical distributions on the phase space and quantum density matrices. Here we show that a much stronger statement holds for quantum systems. Even if the state of the composite corresponds to a single wave function rather than a mixture, the reduced density matrix of the system is canonical, for the overwhelming majority of wave functions in the subspace corresponding to the energy interval encompassed by the microcanonical ensemble. This clarifies, expands, and justifies remarks made by Schrödinger in 1952.
Abstract. The quantum formalism is a "measurement" formalism-a phenomenological formalism describing certain macroscopic regularities. We argue that it can be regarded, and best be understood, as arising from Bohmian mechanics, which is what emerges from Schrödinger's equation for a system of particles when we merely insist that "particles" means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. We find that a Bohmian universe, though deterministic, evolves in such a manner that an appearance of randomness emerges, precisely as described by the quantum formalism and given, for example, by "ρ = |ψ| 2 ." A crucial ingredient in our analysis of the origin of this randomness is the notion of the effective wave function of a subsystem, a notion of interest in its own right and of relevance to any discussion of quantum theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with (nonrelativistic) quantum theory simply evaporate.KEY WORDS: Quantum randomness; quantum uncertainty; hidden variables; effective wave function; collapse of the wave function; the measurement problem; Bohm's causal interpretation of quantum theory; pilot wave; foundations of quantum mechanics.
Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of space-time points. The role of the wave function then is to govern the motion of the matter.
We consider an isolated, macroscopic quantum system. Let H be a microcanonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + δE. The thermal equilibrium macro-state at energy E corresponds to a subspace H eq of H such that dim H eq / dim H is close to 1. We say that a system with state vector ψ ∈ H is in thermal equilibrium if ψ is "close" to H eq . We show that for "typical" Hamiltonians with given eigenvalues, all initial state vectors ψ 0 evolve in such a way that ψ t is in thermal equilibrium for most times t. This result is closely related to von Neumann's quantum ergodic theorem of 1929.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.