The half-life of 19 Ne has been measured using a real-time digital multiparametric acquisition system providing an accurate time-stamp and relevant information on the detectors signals for each decay event. An exhaustive offline analysis of the data gave unique access to experimental effects potentially biasing the measurement. After establishing the influence factors impacting the measurement such as after-pulses, pile-up, gain and base line fluctuations, their effects were accurately estimated and the event selection optimized. The resulting half-life, 17.2569 ± 0.0019 (stat) ± 0.0009 (syst) s, is the most precise up to now for 19 Ne. It is found in agreement with two recent precise measurements and not consistent with the most recent one [L.J. Broussard et al., Phys. Rev. Lett. 112, 212301 (2014)] by 3.0 standard deviations. The full potential of the technique for nuclei with half-lives of a few seconds is discussed.
Currently, radiobiology experiments using heavy ions at GANIL (Grand Accélérateur National d'Ions Lourds) are conducted under the supervision of the CIMAP (Center for research on Ions, MAterials and Photonics). In this context, a new beam monitoring equipment named DOSION has been developed. It allows to perform measurements of accurate fluence and dose maps in near real time for each biological sample irradiated. In this paper, we present the detection system, its design, performances, calibration protocol and measurements performed during radiobiology experiments. This setup is currently available for any radiobiology experiments if one wishes to correlate one's own sample analysis to state of the art dosimetric references.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.