The topology of carnitine palmitoyltransferase I (CPT I) in the outer membrane of rat liver mitochondria was studied using several approaches. 1. The accessibility of the active site and malonyl-CoA-binding site of the enzyme from the cytosolic aspect of the membrane was investigated using preparations of octanoyl-CoA and malonyl-CoA immobilized on to agarose beads to render them impermeant through the outer membrane. Both immobilized ligands were fully able to interact effectively with CPT I. 2. The effects of proteinase K and trypsin on the activity and malonyl-CoA sensitivity of CPT I were studied using preparations of mitochondria that were either intact or had their outer membranes ruptured by hypo-osmotic swelling (OMRM). Proteinase K had a marked but similar effect on CPT I activity irrespective of whether only the cytosolic or both sides of the membrane were exposed to it. However, it affected sensitivity more rapidly in OMRM. By contrast, trypsin only reduced CPT I activity when incubated with OMRM. The sensitivity of the residual CPT I activity was unaffected by trypsin. 3. The proteolytic fragments generated by these treatments were studied by Western blotting using three anti-peptide antibodies raised against linear epitopes of CPT I. These showed that a proteinase K-sensitive site close to the N-terminus was accessible from the cytosolic side of the membrane. No trypsin-sensitive sites were accessible in intact mitochondria. In OMRM, both proteinase K and trypsin acted from the inter-membrane space side of the membrane. 4. The ability of intact mitochondria and OMRM to bind to each of the three anti-peptide antibodies was used to study the accessibility of the respective epitopes on the cytosolic and inter-membrane space sides of the membrane. 5. The results of all these approaches indicate that CPT I adopts a bitopic topology within the mitochondrial outer membrane; it has two transmembrane domains, and both the N- and C-termini are exposed on the cytosolic side of the membrane, whereas the linker region between the transmembrane domains protrudes into the intermembrane space.
Time courses for inhibition of carnitine palmitoyltransferase (CPT) I activity in, and [14C]malonyl-CoA binding to, liver mitochondria from fed or 48 h-starved rats were obtained at 37 degrees C by using identical incubation conditions and a fixed concentration of malonyl-CoA (3.5 microM), which represents the middle of the physiological range observed previously [Zammit (1981) Biochem. J. 198, 75-83] Incubation of mitochondria in the absence of malonyl-CoA resulted in a time-dependent decrease in the ability of the metabolite instantaneously to inhibit CPT I and to bind to the mitochondria. Both degree of inhibition and binding were restored in parallel over a period of 6-8 min on subsequent addition of malonyl-CoA to the incubation medium. However, the increased inhibition of CPT I activity on addition of mitochondria directly to malonyl-CoA-containing medium was not accompanied by an increase in the amount of [14C]malonyl-CoA bound to mitochondria at 37 degrees C. Time courses for binding of [14C]malonyl-CoA performed at 0 degree C were different from those obtained at 37 degrees C. There was little loss of ability of [14C]malonyl-CoA to bind to mitochondria on incubation in the absence of the metabolite, but there was a time-dependent increase in binding on addition of mitochondria to malonyl-CoA-containing medium. It is suggested that these temperature-dependent differences between the time courses obtained may be due to the occurrence of different changes at 37 degrees C and at 0 degree C in the relative contributions of different components (with different affinities) to the binding observed at 3.5 microM-malonyl-CoA. Evidence for multi-component binding was obtained in the form of strongly curvilinear Scatchard plots for instantaneous (5s) binding of malonyl-CoA to mitochondria. Such multi-component binding would be expected from previous results on the different affinities of CPT I for malonyl-CoA with respect to inhibition [Zammit (1984) Biochem. J. 218, 379-386]. Mitochondria obtained from starved rats showed qualitatively the same time courses as those described above, with notable quantitative differences with respect both to the absolute extents of CPT I inhibition and [14C]malonyl-CoA binding achieved as well as to the time taken to attain them.
Mitochondrial outer membranes were prepared from livers of rats that were in the normal fed state, starved for 48 h, or made diabetic by injection of streptozotocin. Membranes were also prepared from starved late-pregnant rats. The latter three conditions have previously been shown to induce varying degrees of desensitization of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA inhibition. We measured the fluorescence polarization anisotropy of two probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluenes ulfonate (TMA-DPH) which, when incorporated into membranes, report on the hydrophobic core and on the peripheral regions of the bilayer, respectively. The corresponding polarization indices (rDPH and rTMA-DPH) were calculated. In membranes of all three conditions characterized by CPT I desensitization to malonyl-CoA, rDPH was decreased, whereas there was no change in rTMA-DPH, indicating that CPT I is sensitive to changes in membrane core, rather than peripheral, lipid order. The major lipid components of the membranes were analyzed. Although significant changes with physiological state were observed, there was no consistent pattern of changes in gross lipid composition accompanying the changes to membrane fluidity and CPT I sensitivity to malonyl-CoA. We conclude that CPT I kinetic characteristics are sensitive to changes in lipid composition that are localized to specific membrane microdomains.
Mitochondria, microsomes and peroxisomes all express overt (cytosol-facing) carnitine palmitoyltransferase activity that is inhibitable by malonyl-CoA. The overt carnitine palmitoyltransferase activity (CPTo) associated with the different fractions was measured. Mitochondria accounted for 65% of total cellular CPTo activity, with the microsomal and peroxisomal contributions accounting for the remaining 25% and 10%, respectively. In parallel experiments, rat livers were perfused in situ with medium containing dinitrophenyl (DNP)-etomoxir in order to inhibit quantitatively and label covalently (with DNPetomoxiryl-CoA) the molecular species responsible for CPTo activity in each of the membrane systems under near-physiological conditions. In all three membrane fractions, a single protein with an identical molecular mass of approximately 88 000 kDa (p88) was labelled after DNP-etomoxir perfusion of the liver. The abundance of labelled p88 was quantitatively related to the respective specific activities of CPTo in each fraction. On Western blots the same protein was immunoreactive with three anti-peptide antibodies raised against linear epitopes of the cytosolic N-and C-domains and of the inter-membrane space loop (L) domain of the mitochondrial enzyme (L-CPT I). However, the reaction of the microsomal protein with the anti-N peptide antibody (raised against epitope Val-14^Lys-29 of CPT I) was an order of magnitude stronger than expected from either microsomal CPTo activity or its DNP-etomoxiryl-CoA labelling. This suggests that the N-terminal domain of the microsomal protein differs from that in the mitochondrial or peroxisomal protein. This conclusion was confirmed using antibody backtitration experiments, in which the binding of anti-N and anti-C antibodies by mitochondria and microsomes was quantified.z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.