The enzyme activity and the expression (protein and mRNA concentrations) of genes encoding for hepatic carnitine palmitoyl-transferases (CPT) I and II were studied during neonatal development, in response to nutritional state at weaning and during the fed-starved transition in adult rats. The activity, the protein concentration and the level of mRNA encoding CPT I are low in foetal-rat liver and increase 5-fold during the first day of extra-uterine life. The activity and gene expression of CPT I are high during the entire suckling period, in the liver of 30-day-old rats weaned at 20 days on to a high-fat diet and in the liver of 48 h-starved adult rats. The activity and CPT I gene expression are markedly decreased in the liver of rats weaned on to a high-carbohydrate diet. By contrast, the activity, the protein concentration and the level of mRNA encoding CPT II are already high in the liver of term foetuses and remain at this level throughout the suckling period, irrespective of the nutritional state of the animals either at weaning or in the adult.
We have tested the possibility that alterations in the fluidity of the outer membrane of rat liver mitochondria could result in changes in the sensitivity of overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA [Zammit (1986) Biochem. Soc. Trans. 14,[676][677][678][679]. The sensitivity of CPT I to malonyl-CoA inhibition was measured by using highly purified mitochondrial outer membranes prepared from fed or 48 h-starved rats in the presence and absence of agents that increase membrane fluidity by perturbing membrane lipid order [benzyl alcohol, isoamyl alcohol (3-methylbutan-1-ol) and 2-(2-methoxyethoxy)ethyl-8-(cis-2-n-octylpropyl)octanoate (A2C)]. All these agents resulted in marked decreases in the ability of malonyl-CoA to inhibit CPT I. This effect was accompanied by a modest increase in the absolute activity of CPT I in the absence ofmalonyl-CoA when the short-chain alcohols were used, but not when A2C was used, suggesting that the effect of increased membrane fluidity to decrease the malonyl-CoA sensitivity of CPT I may occur independently from other actions that may affect more directly the active site of the enzyme. In confirmation of the potential importance of fluidity changes, we showed that a marked increase in sensitivity of CPT I to malonyl-CoA could be produced when assays were performed at lower temperatures than those normally employed. These observations are discussed in the context of the slowness of the changes in CPT I sensitivity to malonyl-CoA inhibition that are induced by physiological perturbations. INTRODUCTIONThe sensitivity of mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I) to malonyl-CoA inhibition changes with physiological state in rat liver (see [1] for review). Under conditions of increased fatty acid oxidation, e.g. starvation, diabetes, the enzyme becomes less sensitive to malonyl-CoA inhibition. This adaptation amplifies the effect of changes in hepatic malonyl-CoA concentration, as decreases in malonylCoA content of the liver are accompanied by decreased sensitivity [2]. Moreover, the two parameters appear to be positively related
1. The interaction of malonyl-CoA with the outer carnitine palmitoyltransferase (CPT) system of rat liver mitochondria was re-evaluated by using preparations of highly purified outer membranes, in the light of observations that other subcellular structures that normally contaminate crude mitochondrial preparations also contain malonyl-CoA-sensitive CPT activity. 2. In outer-membrane preparations, which were purified about 200-fold with respect to the inner-membrane-matrix fraction, malonyl-CoA binding was largely accounted for by a single high-affinity component (KD = 0.03 microM), in contrast with the dual site (low- and high-affinity) previously found with intact mitochondria. 3. There was no evidence that the decreased sensitivity of CPT to malonyl-CoA inhibition observed in outer membranes obtained from 48 h-starved rats (compared with those from fed animals) was due to a decreased ratio of malonyl-CoA binding to CPT catalytic moieties. Thus CPT specific activity and maximal high-affinity [14C]malonyl-CoA binding (expressed per mg of protein) were increased 2.2- and 2.0-fold respectively in outer membranes from 48 h-starved rats. 4. Palmitoyl-CoA at a concentration that was saturating for CPT activity (5 microM) decreased the affinity of malonyl-CoA binding by an order of magnitude, but did not alter the maximal binding of [14C]malonyl-CoA. 5. Preincubation of membranes with either tetradecylglycidyl-CoA or 2-bromopalmitoyl-CoA plus carnitine resulted in marked (greater than 80%) inhibition of high-affinity binding, concurrently with greater than 95% inhibition of CPT activity. These treatments also unmasked an effect of subsequent treatment with palmitoyl-CoA to increase low-affinity [14C]malonyl-CoA binding. 6. These data are discussed in relation to the possible mechanism of interaction between the malonyl-CoA-binding site and the active site of the enzyme.
Mitochondrial outer membranes were prepared from livers of rats that were in the normal fed state, starved for 48 h, or made diabetic by injection of streptozotocin. Membranes were also prepared from starved late-pregnant rats. The latter three conditions have previously been shown to induce varying degrees of desensitization of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA inhibition. We measured the fluorescence polarization anisotropy of two probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluenes ulfonate (TMA-DPH) which, when incorporated into membranes, report on the hydrophobic core and on the peripheral regions of the bilayer, respectively. The corresponding polarization indices (rDPH and rTMA-DPH) were calculated. In membranes of all three conditions characterized by CPT I desensitization to malonyl-CoA, rDPH was decreased, whereas there was no change in rTMA-DPH, indicating that CPT I is sensitive to changes in membrane core, rather than peripheral, lipid order. The major lipid components of the membranes were analyzed. Although significant changes with physiological state were observed, there was no consistent pattern of changes in gross lipid composition accompanying the changes to membrane fluidity and CPT I sensitivity to malonyl-CoA. We conclude that CPT I kinetic characteristics are sensitive to changes in lipid composition that are localized to specific membrane microdomains.
The [3H]tetradecylglycidyl-CoA (TDG-CoA)-binding protein (Mr approx. 88,000) of purified outer membranes from rat liver mitochondria was identified by SDS/PAGE. The region in which it migrated was shown to contain another protein which stained strongly with periodic acid-Schiff reagent and could be removed from membrane extracts by incubation with Sepharose-concanavalin A. Amounts of TDG-CoA-binding protein were prepared from lectin-treated extracts using preparative SDS/PAGE and used to raise a polyclonal antibody in a sheep. The IgG fraction purified from this anti-serum reacted strongly with a protein of Mr approximately 88,000 on Western blots, and much more weakly with two other proteins of Mr approximately 76,000 and Mr approximately 53,000 in extracts of rat liver mitochondrial outer membranes. The crude IgG fraction and immunopurified IgG both removed carnitine palmitoyltransferase (CPT) I activity from very pure outer membrane extracts, suggesting that the TDG-CoA-binding protein against which the antiserum was raised also expresses CPT I activity. This was confirmed by the demonstration of a strong positive correlation between CPT I activity and the amount of immunoreactive protein of Mr approximately 88,000 in mitochondria prepared from rats in different physiological states. By contrast, the antibody did not react with CPT II either in mitochondria or in purified form. Similarly, an anti-(CPT II) antibody did not cross-react with CPT I on Western blots, proving conclusively that CPT I and CPT II are immunologically distinct proteins, as well as being of different functional molecular sizes [Zammit, Corstophine& Kelliher (1988) Biochem. J. 250, 415-420]. Immunoblots of mitochondrial proteins obtained from different tissues indicated that, of the rat tissues tested, only kidney cortex mitochondria contain the same isoform of CPT I as that in liver. Heart, skeletal muscle and brown adipose tissue mitochondria contain a slightly smaller isoform which was only weakly reactive with anti-(rat liver CPT I) antibody, indicating that these tissues contain a molecularly quite distinct isoenzyme. This would explain the previous observations that CPT I in these tissues has markedly different kinetic characteristics from the isoenzyme present in liver mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.