Optically pumped passively modelocked semiconductor disk lasers (SDLs) provide superior performance in average output power, a broad range of operation wavelengths, and reduced complexity. Here, we present record performance with high average power and pulse durations as short as 100 fs with a semiconductor saturable absorber mirror (SESAM) modelocked vertical external-cavity surface-emitting laser (VECSEL) at a center wavelength of 1034 nm. A comprehensive pulse characterization confirms fundamental modelocking with a close to transform-limited output pulse of 128 fs and with negatively chirped output pulses as short as 107 fs, which are externally compressed to 96 fs with a single path through a 2-mm-thick ZnSe plate. For the "96 fs result" the pulse repetition rate is 1.6 GHz, the average output power is 100 mW, and the pulse peak power is 560 W. The transform-limited optical spectrum could in principle support pulses as short as 65 fs with higher order dispersion compensation. We measured the most relevant spectral and nonlinear VECSEL and SESAM parameters and used them as input parameters for our pulse formation simulations. These simulations agree well with our experimental results and provide an outlook for further performance scaling of ultrafast SDL technology.
Optically pumped passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) can generate pulses as short as 100 fs with an intracavity semiconductor saturable absorber mirror (SESAM). Very stable soliton modelocking can be obtained, however, the high-Q-cavity, the short gain lifetime, and the kinetic-hole burning can also support rather complex multipulse instabilities which we analyze in more details here. This onset of multipulse operation limits the maximum average output power with fundamental modelocking and occurs at the roll-over of the cavity round trip reflectivity. Unfortunately, such multipulse operation sometimes can mimic stable modelocking when only limited diagnostics are available.
Ultrafast semiconductor disk lasers (SDLs) passively modelocked using semiconductor saturable absorbers mirrors (SESAMs) generate optical frequency combs (OFCs) with gigahertz line spacings -a regime where solid-state and fiber lasers struggle with geometrical and Q-switching limitations. We stabilized both the frequency comb spacing and the offset without any additional external optical amplification or pulse compression. The overall noise performance is competitive with other gigahertz OFCs. A SESAM-modelocked vertical external-cavity surface-emitting laser (VECSEL) at a center wavelength around 1 µm generates 122-fs pulses with 160 mW average output power and we only needed 17-pJ pulse energy coupled into a silicon nitride (Si 3 N 4 ) waveguide for supercontinuum generation (SCG) and OFC offset stabilization.
We present a thorough investigation of surface deformation and thermal properties of high-damage threshold large-area semiconductor saturable absorber mirrors (SESAMs) designed for kilowatt average power laser oscillators. We compare temperature rise, thermal lensing, and surface deformation of standard SESAM samples and substrate-removed SESAMs contacted using different techniques. We demonstrate that for all cases the thermal effects scale linearly with the absorbed power, but the contacting technique critically affects the strength of the temperature rise and the thermal lens of the SESAMs (i.e. the slope of the linear change). Our best SESAMs are fabricated using a novel substrate-transfer direct bonding technique and show excellent surface flatness (with non-measureable radii of curvature (ROC), compared to astigmatic ROCs of up to 10 m for standard SESAMs), order-of-magnitude improved heat removal, and negligible deformation with absorbed power. This is achieved without altering the saturation behavior or the recovery parameters of the samples. These SESAMs will be a key enabling component for the next generation of kilowatt-level ultrafast oscillators.
We present a high-peak-power SESAM-modelocked thin-disk laser (TDL) based on the gain material Yb-doped lutetia (Yb:LuO), which exceeds a peak-power of 10 MW for the first time. We generate pulses as short as 534 fs with an average power of 90 W and a peak power of 10.1 MW, and in addition a peak power as high as 12.3 MW with 616-fs pulses and 82-W average power. The center lasing wavelength is 1033 nm and the pulse repetition rates are around 10 MHz. We discuss and explain the current limitations with numerical models, which show that the current peak power is limited in soliton modelocking by the interplay of the gain bandwidth and the induced absorption in the SESAM with subsequent thermal lensing effects. We use our numerical model which is validated by the current experimental results to discuss a possible road map to scale the peak power into the 100-MW regime and at the same time reduce the pulse duration further to sub-200 fs. We consider Yb:LuO as currently the most promising gain material for the combination of high peak power and short pulse duration in the thin-disk-laser geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.