We report a semiconductor saturable absorber mirror (SESAM)-modelocked thin-disk laser oscillator delivering a record 350-W average output power with 940-fs, 39-µJ pulses at 8.88-MHz repetition rate and 37-MW peak power. This oscillator is based on the Yb:YAG gain material and has a large pump spot on the disk. The cavity design includes an imaging scheme, which results in multiple reflections on the disk gain medium to enable a larger output coupling rate compared to those used in thin-disk oscillators with a single reflection on the disk. This reduces the intracavity power for a given output power, thus decreasing the stress on the intracavity components. We operate the laser in a low-pressure environment in order to limit the disk's thermal lensing and drastically reduce the nonlinearity picked up in the intracavity air medium. The combination of the imaging scheme and low-pressure operation paves the way to further power scaling of ultrafast thin-disk oscillators toward the kW milestone.
We demonstrate a compact extreme ultraviolet (XUV) source based on high-harmonic generation (HHG) driven directly inside the cavity of a mode-locked thin-disk laser oscillator. The laser is directly diode-pumped at a power of only 51 W and operates at a wavelength of 1034 nm and a 17.35 MHz repetition rate. We drive HHG in a high-pressure xenon gas jet with an intracavity peak intensity of 2.8×10 W/cm and 320 W of intracavity average power. Despite the high-pressure gas jet, the laser operates at high stability. We detect harmonics up to the 17th order (60.8 nm, 20.4 eV) and estimate a flux of 2.6×10 photons/s for the 11th harmonic (94 nm, 13.2 eV). Due to the power scalability of the thin-disk concept, this class of compact XUV sources has the potential to become a versatile tool for areas such as attosecond science, XUV spectroscopy, and high-resolution imaging.
We demonstrate the first Kerr lens mode-locked Yb:CaGdAlO (Yb:CALGO) thin-disk laser oscillator. It generates pulses with a duration of 30 fs at a central wavelength of 1048 nm and a repetition rate of 124 MHz. The laser emits the shortest pulses generated by a thin-disk laser oscillator, equal to the shortest pulse duration obtained by Yb-doped bulk oscillators. The average output power is currently limited to 150 mW by the low gain and limited disk quality. We expect that more suitable Yb:CALGO disks will enable substantially higher power levels with similar pulse durations.
We present a high-peak-power SESAM-modelocked thin-disk laser (TDL) based on the gain material Yb-doped lutetia (Yb:LuO), which exceeds a peak-power of 10 MW for the first time. We generate pulses as short as 534 fs with an average power of 90 W and a peak power of 10.1 MW, and in addition a peak power as high as 12.3 MW with 616-fs pulses and 82-W average power. The center lasing wavelength is 1033 nm and the pulse repetition rates are around 10 MHz. We discuss and explain the current limitations with numerical models, which show that the current peak power is limited in soliton modelocking by the interplay of the gain bandwidth and the induced absorption in the SESAM with subsequent thermal lensing effects. We use our numerical model which is validated by the current experimental results to discuss a possible road map to scale the peak power into the 100-MW regime and at the same time reduce the pulse duration further to sub-200 fs. We consider Yb:LuO as currently the most promising gain material for the combination of high peak power and short pulse duration in the thin-disk-laser geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.